
Best Linear Unbiased Prediction - BLUP

- A TOOL FOR GENETIC EVALUATION

To maximize selection efficiency we want to rank 

animals based on a 

selection criterion/index/EBV

which should be accurate

unbiased



Maximize Accuracy by

• including as much information as possible
 all possible relatives

 correlated traits

• using proper index weights

this is what selection index does! (=BLP)



But what about unbiasedness?

Unbiased EBV’s is a matter of fair comparisons

Possible problems with fairness:

• Some animals produce on better herds (better pastures) 

than others

• Animals are measured at different ages 

• The contemporaries of different animals may have 

different genetic mean 

• Some sires have better mates

• There is culling and selection



Correction for fixed effects

Problem 1:

• Some animals produce on better herds (better pastures) 

than others

Solution 2:

Phenotypic observations are corrected for the mean of the 

appropriate age

Problem 2:

• Some animals are measured at an older age 

Solution 1:

• Phenotypic observations are taken as deviations of a 

mean (e.g. herd mean) 



Example 

progeny means from 4 sires in 2 herds

sire 1       2 3 4

+100     0 0      -100

herd 1 -25 325   275 - -

herd2  +25    - - 325    275

5: link sire

325

375

Genetic level confounded with herds

Problem 3:

The contemporaries of some animals may

have higher genetic mean than of others



Genetic level confounded with herds

Problem 3:

The contemporaries of some animals may

have higher genetic mean than of others

Example 

progeny means from 4 sires in 2 herds

sire 1       2 3 4

+100     0 0      -100

herd 1 -25 325   275 - -

herd2  +25    - - 325    275

5: link sire

325

375



Conclusion 

Need links between herds (reference sires)

Need a simultaneous evaluation of all herd and sire 

effects



The power of linear models

example:  

   7

 330

Sex:

Weight:

Animal No.:

(Animal 7 is unrelated to the others.)

Pedigree

1990:

1991:

1992:

Year of

Birth

354 251

  1 2

327 328 301 270

3 4 5 6
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y'X

Y     =         X                b      +    e

YXXXb ''ˆ solutions:

X is dependent

X’X can not be inverted

Can only estimate 3 

parameters from 3 means

Need restriction to solution
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e.g. put effect of 1992 to zero

General mean zero First year zero Last year zero Sum of years to zero

 =  0  = 302.5  = 330  =     313

1990 = 302.5 1990 = 0 1990 = -27.5 1990 =    -10.5

1991 = 306.5 1991 = +4 1991 = -23.5 1991 =    -6.5

1992 = 330 1992 = +27.5 1992 = 0 1992 =    17

There are more solutions possible

estimable functions are unchanged

- expected value of an observation

- difference between years



X     
b meaning

the mean of females in 1992

the effect of year 1990 (relative to 1992)

the effect of year 1991 (relative to 1992)

the effect of males (relative to females)
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Note: year 1992 appears not so good after all!



Conclusion

• Linear models are a powerful, and relatively 

simple way to correct for different fixed 

effects in unbalanced designs

• Will use same principle to correct breeding 

values for different fixed effects


