BLUP *How it works*

- A joint evaluation of all animals,
 - uses all additive genetic relationships
 - uses all data on all animal jointly
- It works as a linear model
 - correcting different effects for each other
 - jointly estimates animal effects and fixed effects (herds)
-but has Selection Index properties (*Regression with "heritability"*)

Estimating EBV's with linear models

HERE: animal effects only

A breeding value is not treated as a fixed, but as a random effect

Estimating animal's effects as EBV's

If treated as fixed effect

 $\hat{u} = (Z'Z)^{-1}Z'y$ Basically means per animal

This is wrong because we want:

• Deviations from a mean:

 $\hat{u} = (Z'Z)^{-1}Z'(y-\overline{y})$

Shrink the breeding values

Basically mean deviations per animal

We need to pre-multiply these deviations with 'heritability'

- see next

The need to shrink!

In a fixed effect model: $\hat{u} = y - \bar{y}$

We are used to regressing this toward the mean:

$$\hat{\mathbf{u}} = \mathbf{h}^2(\mathbf{y} - \overline{\mathbf{y}}) = \frac{\mathbf{V}_A}{\mathbf{V}_A + \mathbf{V}_E} (\mathbf{y} - \overline{\mathbf{y}}) = \frac{1}{1 + \frac{\mathbf{V}_E}{\mathbf{V}_A}} (\mathbf{y} - \overline{\mathbf{y}}) = \frac{1}{1 + \lambda} (\mathbf{y} - \overline{\mathbf{y}})$$

And in linear model language this looks like

$$\hat{u} = (Z'Z + \lambda)^{-1}(y - \overline{y})$$

Where
$$\lambda = \frac{V_E}{V_A}$$

In BLUP we can also take relationships among animals into account

$$\hat{u} = (Z'Z + \lambda)^{-1}(y - \overline{y})$$

Is expanded to

$$\hat{u} = (Z'Z + \lambda A^{-1})^{-1}(y - \overline{y})$$

This A is a matrix with all relationships among all animals in the vector u

The relationships matrix A -NRM

We need: $\hat{u} = (Z'Z + \lambda A^{-1})^{-1}(y - \bar{y})$

(1	0	.5	.5	.5	0	0
0	1	0	0	.5	.5	0
.5	0	1	.25	.25	0	0
.5	0	.25	1	.25	0	0
.5	.5	.25	.25	1	.25	0
0	.5	0	0	.25	1	0
0	0	0	0	0	0	1)

Elements are straightforward But we need inverse Direct inverse is easier for complex pedigree

Building the relationships matrix – We need the inverse

which can be done directly with simple rules

	Both parents known	One parent known	Neither parent known
Own diagonal	2	4/3	1
parent x animal	-1	-2/3	
parents' diagonals	1/2	1/3	
parent x parent	1/2		

For each animal which is to have an estimate of u, add to A⁻¹:

Now solve the EBV's from the linear model

 $\hat{u} = [z'z + A^{-1}\lambda]^{-1} Z'(y-\hat{y})$ $\lambda = 1 \text{ if } h^2 = 0.5$

$\begin{bmatrix} \mathbf{u}_1 \end{bmatrix}$		1	0	0	0	0	0	0		13/6	1/2	-2/3	-2/3	-1	0	0]	$]^{-1}$	[45.3]
u ₂		0	1	0	0	0	0	0		1/2	11/6	0	0	-1	-2/3	0		- 57.7
u ₃		0	0	1	0	0	0	0		-2/3	0	4/3	0	0	0	0		18.3
u ₄	=	0	0	0	1	0	0	0	+	-2/3	0	0	4/3	0	0	0		19.3
u ₅		0	0	0	0	1	0	0		-1	-1	0	0	2	0	0		-7.7
u ₆		0	0	0	0	0	1	0		0	-2/3	0	0	0	4/3	0		- 38.7
u ₇		0	0	0	0	0	0	1		0	0	0	0	0	0	1		21.3

$(\hat{\mathbf{u}}_1)$		(.410	030	.117	.117	.127	008	0)	(45.3)
$\hat{\mathbf{u}}_2$		030	.435	008	008	.135	.124	0	-57.7
û3		.117	008	.462	.033	.036	002	0	18.3
û4	=	.117	008	.033	.462	.036	002	0	19.3
ŵ5		.127	.135	.036	.036	.421	.039	0	-7.7
û ₆		008	.124	002	002	.039	.464	0	-38.7
\û7∕		0	0	0	0	0	0	.5)	(21.3)

BLP is the same as the classical selection index, except that there is a custom set of index weights for each candidate animal whose breeding value is to be estimated.

BLP results

Does this make sense?

$$\hat{u}_7 = (1 + \lambda)^{-1}(330 - 308.72) = h^2 \times 21.28 = 10.64$$

Animal 1 leans on its three offspring.

For animal 1, there is a negative weight on animal 2's phenotype.

MIXED MODELS: Best Linear Unbiased Prediction

breeding values → random effects herds, years etc → fixed effects

We want

- to estimate breeding values
- estimate/correct for fixed effects

Jointly in a MIXED MODEL

 $\mathbf{Y} = \mathbf{X}\mathbf{b} + \mathbf{Z}\mathbf{u} + \mathbf{e}$

Mixed Model equations

$$\begin{pmatrix} X'X & X'Z \\ Z'X & Z'Z + \lambda A^{-1} \end{pmatrix} \begin{pmatrix} \hat{b} \\ \hat{u} \end{pmatrix} = \begin{pmatrix} X'y \\ Z'y \end{pmatrix}$$

Example Mixed Model for BLUP analysis

Mixed Model Equations

Coefficient matrix

Solution Right Hand Side

Mixed Model Equations

$\begin{pmatrix} \mathbf{X'X} & \mathbf{X'Z} \\ \mathbf{Z'X} & \mathbf{Z'Z} + \lambda \mathbf{A}^{-1} \end{pmatrix} \begin{pmatrix} \hat{\mathbf{b}} \\ \hat{\mathbf{u}} \end{pmatrix} = \begin{pmatrix} \mathbf{X'y} \\ \mathbf{Z'y} \end{pmatrix}$

$$\begin{pmatrix} \hat{b} \\ \hat{u} \end{pmatrix} = \begin{pmatrix} X'X & X'Z \\ Z'X & Z'Z + \lambda A^{-1} \end{pmatrix}^{-1} \begin{pmatrix} X'y \\ Z'y \end{pmatrix}$$

Solution = Inverse of Coefficient matrix . Right Hand Side

olution to MME		b û) =	$\begin{pmatrix} X \\ Z \end{pmatrix}$	'X 'X Coeffi	Z'Z	X'Z + λA matrix	$\begin{pmatrix} -1 \end{pmatrix}^{-1}$	$\begin{pmatrix} X' \\ Z' \end{pmatrix}$	$\begin{pmatrix} y \\ y \end{pmatrix}$	RHS	Solution	20	to MMIL
γ		7	1	3	1	1	1	1	1	1	1	$^{-1}$ 2161		311.9
b ₁		1	3	1	1	1	0	0	0	0	-1	275		-9.15
\mathbf{b}_2		3	1	5	0	0	1	1	1	1	-1	896		-8.9
$\hat{\mathbf{u}}_1$		1	1	0	19/6	1/2	-2/3	-2/3	-1	0	0	354		28.26
$\hat{\mathbf{u}}_2$		1	1	0	1/2	17/6	0	0	-1	-2/3	0	251		-28.85
û ₃	=	1	0	1	-2/3	0	7/3	0	0	0	0	327	=	18.34
$\hat{\mathbf{u}}_4$		1	0	1	-2/3	0	0	7/3	0	0	0	328		18.77
$\hat{\mathbf{u}}_{5}$		1	0	1	-1	-1	0	0	3	0	0	301		-0.87
$\hat{\mathbf{u}}_{6}$		1	0	1	0	-2/3	0	0	7/3	7/3	0	270		-22.4
$\begin{bmatrix} \hat{\mathbf{u}}_7 \end{bmatrix}$		1	-1	-1	0	0	0	0	0	0	2	330		0

Counting records in different herds

	$\left(\hat{b}\right)_{=}\left(X'X\right)$				' <i>X</i>	Z	K'Z	\int^{-1}	X'y different herd					
		û		Z	' <i>X</i>	Z'Z	$+\lambda A$		Z'	y				
		. /												
- μ -		7	1	3	1	1	1	1	1	1	1]	⁻¹ [2161]	311.9 3	
\mathbf{b}_1		1	3	1	1	1	0	0	0	0	-1	275	-9.15	
\mathbf{b}_{2}		3	1	5	0	0	1	1	1	1	-1	896	-8.9	
$\mathbf{\hat{u}}_1$		1	1	0	19/6	1/2	-2/3	-2/3	-1	0	0	354	28.26	
$\mathbf{\hat{u}}_{2}$		1	1	0	1/2	17/6	0	0	-1	-2/3	0	251	- 28.85	
û ₃	=	1	0	1	-2/3	0	7/3	0	0	0	0	327	= 18.34	
$\mathbf{\hat{u}}_4$		1	0	1	-2/3	0	0	7/3	0	0	0	328	18.77	
$\hat{\mathbf{u}}_{5}$		1	0	1	-1	-1	0	0	3	0	0	301	-0.87	
$\mathbf{\hat{u}}_{6}$		1	0	1	0	-2/3	0	0	7/3	7/3	0	270	-22.4	
$\hat{\mathbf{u}}_7$		1	-1	-1	0	0	0	0	0	0	2	330	0	

Counting animals in diff. herds

$(\hat{b})_{-}$	(X'X)	X'Z)-1	(X'y)	d
$\left(\hat{u}\right)^{-1}$	Z'X	$Z'Z + \lambda$	A^{-1}	Z'y	

[μ]		7	1	3	1	1	1	1	1	1	1	⁻¹ [2161]		311.9
b ₁		1	3	1	1	1	0	0	0	0	-1	275		-9.15
b ₂		3	1	5	0	0	1	1	1	1	-1	896		- 8.9
$\hat{\mathbf{u}}_1$		1	1	0	19/6	1/2	-2/3	-2/3	-1	0	0	354		28.26
$\hat{\mathbf{u}}_2$		1	1	0	1/2	17/6	0	0	-1	-2/3	0	251		- 28.85
$\hat{\mathbf{u}}_3$	_	1	0	1	-2/3	0	7/3	0	0	0	0	327	_	18.34
$\hat{\mathbf{u}}_4$		1	0	1	-2/3	0	0	7/3	0	0	0	328		18.77
$\hat{\mathbf{u}}_{5}$		1	0	1	-1	-1	0	0	3	0	0	301		-0.87
$\hat{\mathbf{u}}_{6}$		1	0	1	0	-2/3	0	0	7/3	7/3	0	270		-22.4
$\begin{bmatrix} \hat{\mathbf{u}}_7 \end{bmatrix}$		1	-1	-1	0	0	0	0	0	0	2			0

$$\begin{pmatrix} \hat{b} \\ \hat{u} \end{pmatrix} = \begin{pmatrix} X'X & X'Z \\ Z'X & Z'Z + \lambda A^{-1} \end{pmatrix}^{-1} \begin{pmatrix} X'y \\ Z'y \end{pmatrix}$$

Counting animals' records and their relationships and heritability

Γμ ⁻]	[7	1	3	1	1	1	1	1	1	1] ⁻¹ [2161	7	311.9
b ₁		1	3	1	1	1	0	0	0	0	-1	275		-9.15
b ₂		3	1	5	0	0	1	1	1	1	-1	896		-8.9
$\hat{\mathbf{u}}_1$		1	1	0	19/6	1/2	-2/3	-2/3	-1	0	0	354		28.26
$\hat{\mathbf{u}}_2$		1	1	0	1/2	17/6	0	0	-1	-2/3	0	251		-28.85
$\hat{\mathbf{u}}_3$	=	1	0	1	-2/3	0	7/3	0	0	0	0	327	=	18.34
$\hat{\mathbf{u}}_4$		1	0	1	-2/3	0	0	7/3	0	0	0	328		18.77
$\hat{\mathbf{u}}_{5}$		1	0	1	-1	-1	0	0	3	0	0	301		-0.87
$\hat{\mathbf{u}}_{6}$		1	0	1	0	-2/3	0	0	7/3	7/3	0	270	0	-22.4
$\begin{bmatrix} \hat{\mathbf{u}}_7 \end{bmatrix}$		1	-1	-1	0	0	0	0	0	0	2			0

Notice that:

- 1. The X'X and X'Y are as fixed effects analysis.
- 2. $Z'Z + A^{-1}\lambda$ is as in random model
- 4. Because the mean is fitted, raw data can be used (in Z'Y = Y) rather that deviations from the overall mean, as used for the random model in the last lecture.

Note that there is a "Z'X block "which is used to account for fixed effects when calculating EBV's.

BLUP solutions

[μ]]	7	1	3	1	1	1	1	1	1	1	⁻¹ [2161]		311.9	Mear	า
\mathbf{b}_1		1	3	1	1	1	0	0	0	0	-1	275		-9.15	Yr1	-
\mathbf{b}_2		3	1	5	0	0	1	1	1	1	-1	896		-8.9	yr2	
$\hat{\mathbf{u}}_1$		1	1	0	19/6	1/2	-2/3	-2/3	-1	0	0	354		28.26		
$\hat{\mathbf{u}}_2$		1	1	0	1/2	17/6	0	0	-1	-2/3	0	251		- 28.85		
û ₃	=	1	0	1	-2/3	0	7/3	0	0	0	0	327	=	18.34		
$\hat{\mathbf{u}}_4$		1	0	1	-2/3	0	0	7/3	0	0	0	328		18.77	EBA	Vs
$\hat{\mathbf{u}}_{5}$		1	0	1	-1	-1	0	0	3	0	0	301		-0.87		
$\hat{\mathbf{u}}_{6}$		1	0	1	0	-2/3	0	0	7/3	7/3	0	270		-22.4		
$\hat{\mathbf{u}}_7$		1	-1	-1	0	0	0	0	0	0	2	330		0		
_ · _	•	-									-		•		J	

9

251

₩

ę

1992:

Birth

1990:

1991:

BLUP solutions

Year difference was 4 in fixed model ('raw means') Now corrected for animal effects = 'trend'

Further: Looking at the results

- Year effect is different from fixed model. Why?
- Animal 7 has a zero EBV. Why?

BLUP accounts for selection, genetic trend......

EBV of animals 1 and 2 are zero – on average
EBV of animals 3-6 are above zero – on average Why?

BLUP How it works

- A joint evaluation of all animals,
 - uses all additive genetic relationships
 - uses all data on all animal jointly
- It works as a linear model
 - correcting different effects for each other
 - jointly estimates animal effects and fixed effects (herds)
-but has Selection Index properties *(Regression with "heritability")*