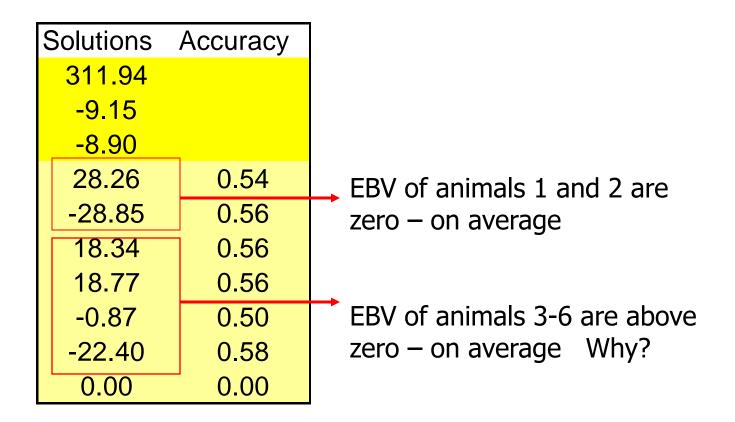
BLUP properties

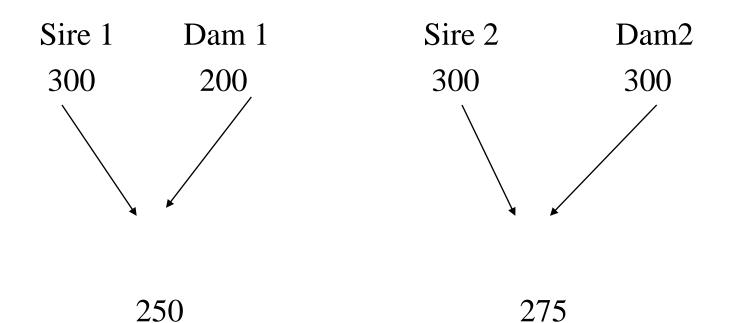
- Correction for mates and selection over generations.
- Allows estimation of genetic trend
- Selection across age classes
- Accuracy and linkage between herds/CGs
- BLUP and inbreeding

Properties of BLUP solutions



BLUP provides genetic trend

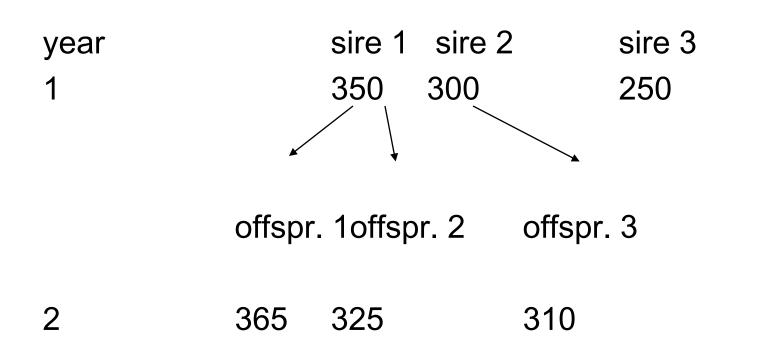
Possible bias in genetic evaluation: Some sires have better mates



Blup accounts for this (see next)

Need to evaluate all animals jointly

Possible bias in genetic evaluation: Animals are from selected parents



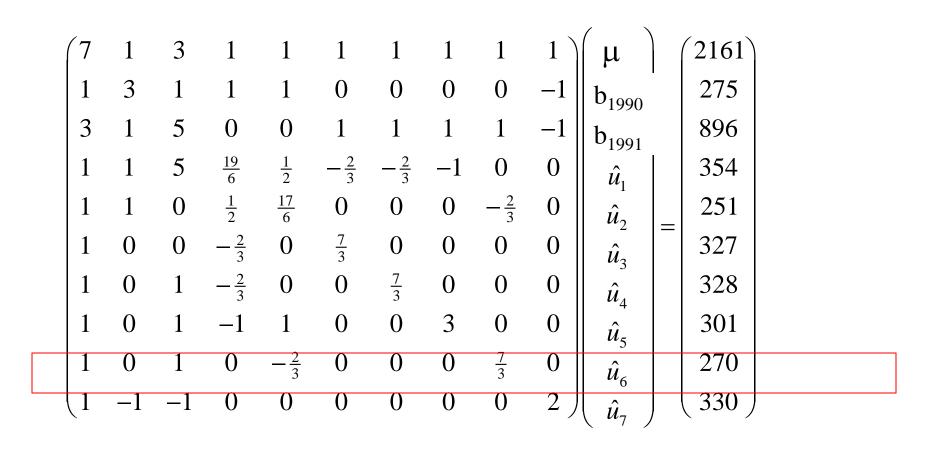
as years/generations go by, the genetic mean changes

Blup accounts for this (see next)

- need to account for selection (evaluate jointly)
- calculate genetic trend from increase in EBV over years

Properties of BLUP how are individual EBV's estimated?

Look at equations for individual animals



$$\mu + b_{1991} - \frac{2}{3}\hat{u}_2 + \frac{7}{3}\hat{u}_6 = 270$$

$$\mu + b_{1991} - \frac{2}{3}\hat{u}_{2} + \frac{7}{3}\hat{u}_{6} = 270$$

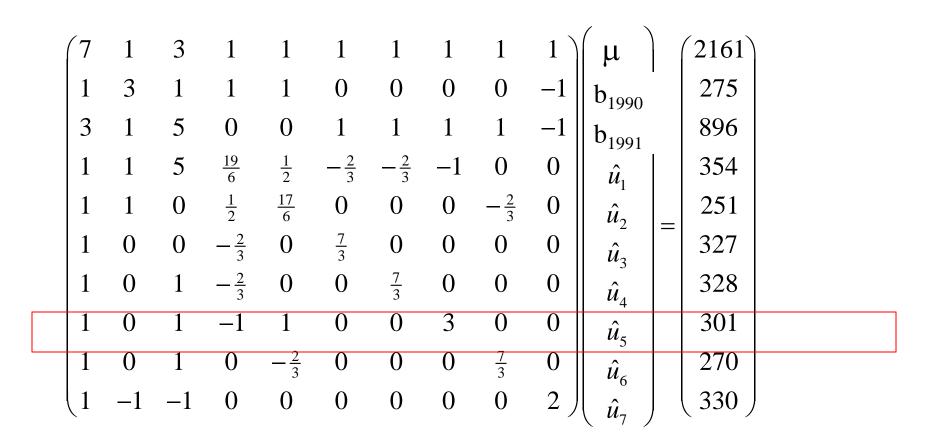
$$\hat{u}_{6} = \frac{3}{7}(270 - \mu - b_{1991}) + \frac{2}{7}\hat{u}_{2}$$

$$\hat{u}_{6} = \frac{3}{7}(270 - \mu - b_{1991} - \frac{1}{2}\hat{u}_{2}) + \frac{1}{2}\hat{u}_{2}$$
Selection index
weight:
This is own performance
as deviation from
expected, given its sire

$$\mu + b_{1991} - \frac{2}{3}\hat{u}_{6} = 270$$

$$\frac{1}{2}\hat{u}_{2}$$
This comes
from sire

3/4 VA / (3/4 VA+VE)



$$\mu + b_{1991} - \hat{u}_1 - \hat{u}_2 + 3\hat{u}_5 = 301$$

For animal 5

$$\mu + b_{1991} - \hat{u}_1 - \hat{u}_2 + 3\hat{u}_5 = 301$$

$$\hat{u}_5 = \frac{1}{3}(301 - \mu - b_{1991} - \frac{1}{2}(\hat{u}_1 + \hat{u}_2)) + \frac{1}{2}(\hat{u}_1 + \hat{u}_2)$$
This is own performance as deviation from expected, given its sire and dam
Mean of parents

Selection index weight:

 $\frac{1}{2}$ VA /($\frac{1}{2}$ VA+VE)

(7	1	3	1	1	1	1	1	1	1)	(μ)		(2161)	
1	3	1	1	1	0	0	0	0	-1	b ₁₉₉₀		275	
3	1	5	0	0	1	1	1	1	-1	b ₁₉₉₁		896	
1	1	5	$\frac{19}{6}$	$\frac{1}{2}$	$-\frac{2}{3}$	$-\frac{2}{3}$	-1	0	0	\hat{u}_1		354	
1	1	0	$\frac{1}{2}$	$\frac{17}{6}$	0	0	0	$-\frac{2}{3}$	0	\hat{u}_2	_	251	
1	0	0	$-\frac{2}{3}$	0	$\frac{7}{3}$	0	0	0	0	\hat{u}_3		327	
1	0	1	$-\frac{2}{3}$	0	0	$\frac{7}{3}$	0	0	0	\hat{u}_4		328	
1	0	1	-1	1	0	0	3	0	0	\hat{u}_5		301	
1	0	1	0	$-\frac{2}{3}$	0	0	0	$\frac{7}{3}$	0	\hat{u}_6		270	
$\left(1\right)$	-1	-1	0	0	0	0	0	0	2)	$\begin{pmatrix} 0\\ \hat{u}_7 \end{pmatrix}$		330	

$$\mu + b_{1990} + \frac{1}{2}\hat{u}_1 + \frac{17}{6}\hat{u}_2 - \hat{u}_5 - \frac{2}{3}\hat{u}_6 = 251$$

For animal 2

$$\mu + b_{1990} + \frac{1}{2}\hat{u}_1 + \frac{17}{6}\hat{u}_2 - \hat{u}_5 - \frac{2}{3}\hat{u}_6 = 251$$

$$\hat{u}_{2} = \frac{6}{17}(251 - \mu - b_{1990}) - \frac{6}{17}(\hat{u}_{5} - \frac{1}{2}\hat{u}_{1}) + \frac{4}{17}\hat{u}_{6}$$
This is own performance as deviation from expected, Prog 1, Prog 2, corrected no dam for dam

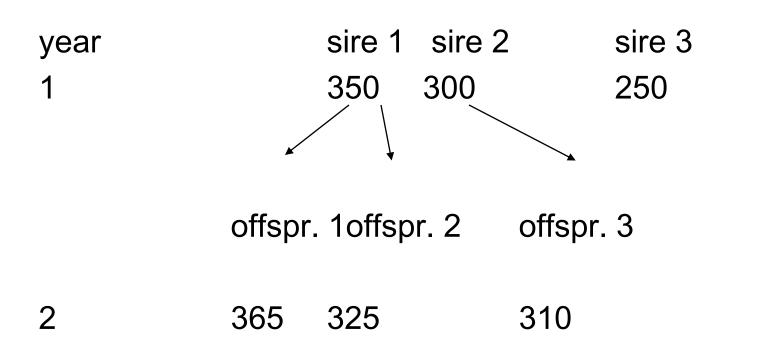
Parents themselves estimated based on:

•own record

- progeny records
- •correction for mates

Weights are same as in selection indexBLUP accounts for selection!!

Possible bias in genetic evaluation: Animals are from selected parents



as years/generations go by, the genetic mean changes

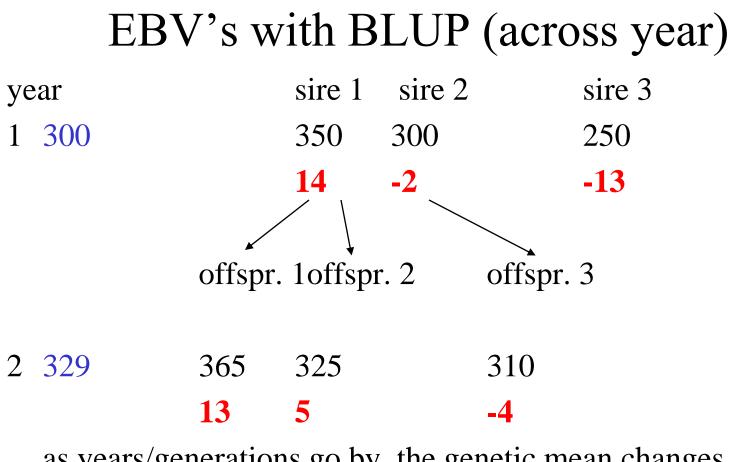
- need to account for selection (evaluate jointly)
- calculate genetic trend from increase in EBV over years

EBV's without BLUP (within year)

year	sire 1	sire 2	sire 3
1 300	350	300	250
	13	0	-13

offspr. 10ffspr. 2	offspr. 3
--------------------	-----------

2 333	365	325	310
	8	-2	-6



as years/generations go by, the genetic mean changes

- need to account for selection (evaluate jointly) ۲
- calculate genetic trend from increase in • EBV over years



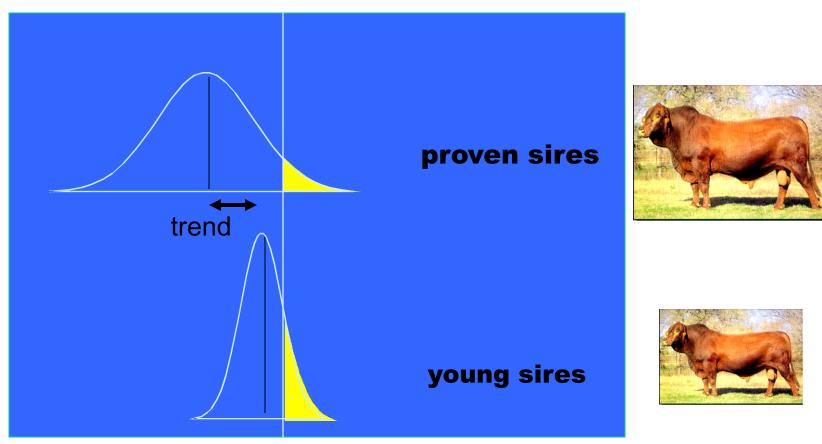
BLUP allows to separate between environmental and

Genetic Trend

Simply as mean EBV's per year of birth

Optimizing Generation Interval

• Dilemma between young and old sires

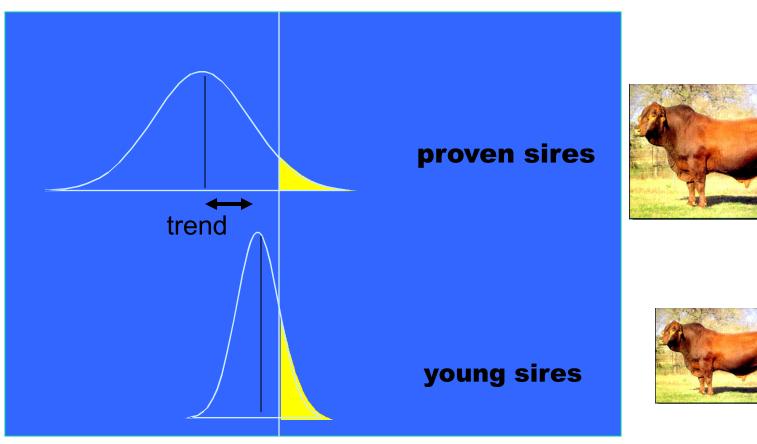


Truncation Point

Genetic Evaluation helps

BLUP EBV Optimizes generation interval

• Dilemma between young and old sires



Truncation Point

BLUP and Inbreeding

BLUP uses family information
 → co-selection of relatives
 → more inbreeding

 loss of variance
 and inbreeding depression

• Does it balance out increased accuracy?

Simulation:

Selection on INDividual performance vs selection on BLUP

		Merit genetic merit			Inbreeding	
Heritability	Year	IND	BLUP	BLUP/IND	IND	BLUP
0.1	5	0.38	0.63	1.66	0.067	0.167
	10	0.78	1.41	1.81	0.174	0.383
0.3	5	1.1	1.41	1.28	0.078	0.141
	10	2.4	3.14	1.31	0.193	0.332
0.6	5	2.25	2.29	1.02	0.087	0.13
	10	5.16	5.31	1.03	0.205	0.293

1. BLUP more response than phenotypic selection (IND) *Difference is larger for smaller heritability.*

- 2. BLUP more inbreeding *Especially for low heritabilities*
- 3. BLUP still better after 10 years (???)

Advantages BLUP EBVs

- Optimal weights for all information sources
- Flexible: Lots of different sets exist of optimal weighting factors, BLUP does it automatically
- Allows comparisons of EBV's of animals in different herd (possibly with different genetic means)
 - But links need to exist in the data!
- Accounts for culling and selection, non-random mating
 - But non selected animals need to be included in analysis!
- Allows selection across age classes
- Provides an estimate of genetic trend

Consequences of BLUP selection

- Maximize genetic response in next generation
- Can compare animals over age classes
 → BLUP optimises generation interval
- Tend to select more related animals the more so with lower heritability
 → BLUP leads to more inbreeding
- Optimal selection uses BLUP + restricted inbreeding (but by how much?)
- BLUP only optimises next generation merit!

Accuracy of BLUP EBV's

The accuracy of an EBV depends on: 'the amount of information used' own info / relatives

The value of information (say a phenotype) depends on

- 1) the heritability,
- 2) the additive genetic relationship
- 3) the genetic correlation
- 4) the <u>effective number</u> of records.

How is Accuracy (r) of BLUP-EBV's calculated?

• Use *inverse* of coefficient matrix of mixed model equations

$$\begin{pmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{Z} \\ \mathbf{Z}'\mathbf{X} & \mathbf{Z}'\mathbf{Z} + \lambda \mathbf{A}^{-1} \end{pmatrix}^{-1}$$

independent of data values !!!!

Diagonal of Coeff. Matrix is basically the number of records per class/animal (N)

Inverse of Coeff. Matrix is basically 1/n

- Use diagonal for animal i: Cⁱⁱ
- Prediction Error Variance: PEV = C^{ii} .var(e) (~ " σ^2/N ")

Remember $PEV = (1-r_{IA}^2).V_A$

→
$$r_{IA}^2 = (V_A - PEV)/V_A$$

 $r_{IA}^2 = 1 - \lambda C^{ii}$
Accuracy = $r_{IA} = \sqrt{(1 - \lambda C^{ii})}$

Cⁱⁱ is diagonal of MME

Effective number of records

a record has less value when in a small contemporary group

• A single observation is effectively worth

 $n_e = 1 - (1/N)$

where N is the number of animals in the contemporary group

• Sire with n progeny in CG of N:

$$n_e = \frac{n^*(N-n)}{N}$$

Examples effective number of records

Contemporary group size	1 record is effectively
1	0
2	0.5
4	0.75
20	0.95

Contemporary group size	# sire A	effective # sire A
1	1	0
10	10	0
10	9	0.9
10	1	0.9
10	5	2.5

BLUP accuracy depends on the model used!

model

anin	nal <u>1</u>	2	3	4
1	0.7683	0.6082	0.5404	0.3809
2	0.7516	0.6264	0.5561	0.5181
3	0.7335	0.609	0.5647	0.4164
4	0.7335	0.609	0.5647	0.5554
5	0.7612	0.5664	0.504	0.4243
6	0.7321	0.6175	0.5788	0.5124
7	0.7071	0.6304	0	0

model 1	y = animal (mean is known)	
m2:	y = mean + animal	Need to
m3:	y = mean + year + animal	find a
m4:	y = mean + year + sex + animal	balance

Need to find a balance between

unbiasedness > many (i.e. small) fixed effect classes

and

accuracy > few large fixed effect classes

An observation is mor worth when comapred with many others

I progeny testing designs, we don't need necessarily many progeny of the same sire tested in same flock/herd, in fact better spread across as many flocks as possible