
Estimation of Variance Components

Why?

• Better understanding of genetic mechanism

• Needed for prediction of breeding values

– Selection Index / BLUP

• Needed for optimization of breeding programs 

and prediction of response



Variance Components Parameters

• Add. Genetic Heritability

• Residual 

• Maternal Maternal Heritability

• Permanent Environment Repeatability
• Litter, Common full-sib comp‟t (“c2”)

• Dominance,

• Herd

• Covariances Correlations

Phenotypic/ Genetic



When to (re) estimate variance components?

• New trait

• (co)variances change over time due to 

environmental and/or genetic change

– Selection

– Upgrading

– Trait definition



Variance and Covariance

• Variance: measure of differences (extent of)

• Covariance: measure of „differences in common‟

• Between individuals/ between traits

sire

Individual 

Values

Var between Families

Var within Fam

Types of family resemblance

None Moderate Full

1 2 3 1 2 3 1 2 3

1 1 1 2 2 1 1 2 3

2 2 2 3 1 3 1 2 3

3 3 3 1 2 3 1 2 3

None Moderate Large

Large Moderate None



Relating variance components to underlying effects

- give it a meaning!

• Variance between groups = covariance within groups!

• Variance between HS families

= Covariance among half sibs          = ¼ VA

They share 25% of their genes!

Variance within HS families

= Residual Variance = VP – ¼ VA

= ¾ VA + VE + VD



Relating variance components to underlying effects

- give it a meaning!

• Variance between groups = covariance within groups!

• Variance between FS families

= Covariance among full sibs         = ½  VA + Vec +  ¼ VD

They share 50% of their genes!

Variance within FS families

= Residual Variance = VP – ½ VA - Vec - ¼ VD

= ½ VA + VEW + ¾ VD



Analyses of Variance

Principle

• Detect the importance of different sources of effects

• Importance is determined by its contribution to variation

• Variation if derived from sums of squares and df



Analyses of Variance

Example

yi =  + ei  = mean (fixed)

ei = residual is random 
(causes variation)

Var(y) = 

Same as

Calculating sum of squares

Equal SS to its expectation      E(SSE) = (n-1).2
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Analyses of Variance

Example Data y = [8, 9, 11, 12]

Model: yi =  + ei

Sums of squares: Total: 82 + 92 + 112 + 122 = 410

Mean: 4 * 102 = 400

Residual SS = 10

(= (-2)2 + (-1)2 + 12 + 22)



Analyses of Variance

Example Data y = [8, 9, 11, 12] a: i = 1  1  2  2

Model: yi =  + ai + eij

Estimates: = 10 ai = -1.5 a2 = +1.5

Sum of squares

Observed: 8        9      11      12            410 SSTotal

Mean: 10      10      10      10 400  SSMean

a-effect           -1.5    -1.5   +1.5   +1.5               9 SSA

Residual         -0.5   +0.5    -0.5   +0.5 1 SSE



ANOVA-Table

SS df MS EMS

Mean 400 1 

A-effect 9 1 9 e
2 + 2a

2

Residual 1 2 0.5 e
2

Total 410 4

Note:  “a-effect” is a classification of data: e.g. according to sires

(half sib groups). It relates to variance between groups

“residual” relates to variance within groups

Nr. per 

class



Group (e.g. sire) differences relate to variance between groups

“residual” differences relates to variance within groups

a
2 = 4.25 a = 2.1

a1 a2   

8, 9 10, 11

e
2 = 0.5 e = 0.7



Summarizing the procedure

Modeling (general)

• Data = fixed effects + random effects

– E(y) = fixed effects means

– Var(y) = variance due to random effects

Interpretation

– Statistically:

• Need sufficient data

• Need to think about data structure

• Sampling conditions need to be fulfilled (random?)

– Genetically

• Translating the components into meaningful parameters

– (e.g. sire variance = ¼ VA)



h2 estimates from half-sib families

Depend on number in each family (higher number  more accuracy) 

Poor estimate of family means Good estimate of family means



h2 estimates from half-sib families

Depend on the number of sires (sire families) in the sample (higher 

number  more accuracy) 

Small sample of sire,

bad estimate of sire variance

Large sample of sire,

better estimate of sire variance



Accuracy:    SE of heritability estimate

True heritability

Nr. of records 0.1 0.3

100 0.18 0.30

500 0.08 0.14

1000 0.06 0.10

5000 0.03 0.04

Estimate of h2

SE of estimate of h2
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Effect of progeny group size on SE of heritability
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The following slides 

are not GENE422 material (reference only)



Methods for variance component estimation

• ANOVA - balanced data

• ANOVA – unbalanced data

– Henderson‟s methods (SAS etc)

• Likelihood methods

– Maximum Likelihood

– Restricted maximum Likelihood (REML)

• Bayesian Methods

– Gibbs Sampling



ANOVA-Table for balanced data

SS df MS EMS

Mean 400 1 

A-effect 9 1 9 e
2 + na

2

Residual 1 2 0.5 e
2

Total 410 4 Nr. per 

class

A-effect refers to differences „Between groups‟

Residual refers to differences „Within groups‟

Model: yi =  + ai + eij



ANOVA in Unbalanced data

Same idea as balanced (previous) but use a weighted 
number for “n” in: EMSA = e

2 + na
2

Need matrix notation to work out SS and EMS 

(as in linear  models)

Standard method  in computer programs such as SAS, Harvey, 
SPSS etc.

Most general of those is called the “Henderson III method”



Likelihood methods

Each observation has a probability density, determined by its

• distribution

• expected value (e.g. mean) „location parameters‟

• variance „dispersion parameters‟

E.g. y with normal distribution, mean   and variance 2
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This is a Probability Density Function (PDF) for the observation

It gives the probability of the observation, given the parameters  and 2

But we turn this around and get the likelihood of the parameters given y



Likelihood methods

We can multiply these probability values over the whole data, and 

include the fact that some of the observations may be related, i.e. 

we have a joint distribution

Data vector y with  exp. means  E(y) = Xb and var(y) = V 

The log of the likelihood is:
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The expression gives the likelihood of the parameters (b, V) given data (X, y)

in the right-hand side. It is a restricted (or residual) likelihood , after fitting the 

fixed effects. 

first two terms are expectations  the last term is a (residual) sum of squares



Restricted Maximum Likelihood

• Correct all data first for all fixed effects

• Find the maximum likelihood (solution for variance 
components) after these corrections

• Usually an iterative procedure is used to solve the problem

• Starting values (for the parameters) are needed to get 
going



An example of a REML algorithm 
(EM-algorithm,for illustration only)

1. Solve mixed model equations using a prior value 
for the variance components (ratio)

2. Solve variance components from the MME-solutions

Use a new  (= e
2/a

2) and iterate between 1 and 2
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Why is REML better than ANOVA from SAS?

• It is by definition more accurate

• Uses full mixed model equations, so can utilize all 
animal relationships (animal model)

• Therefore, it has many properties as BLUP, e.g. it 
accounts for selection

• It allows more complicated mixed models (maternal 
effects, multiple traits etc) as with BLUP



Further notes on REML procedure

• If using an animal model, heritability is 
estimated from naturally combining 
– information between families (HS/FS) 

– information from parent-offspring regression

• The method and  model are very flexible, 
but it can be hard to evaluate the estimates 
based on the data and the data structure
– e.g. Is there a good family structure?



Evaluating the quality of the parameter estimates

• Accuracy
– Look at SE of estimates (although these are 

approximated!)

– Evaluate effect of number of records, and structure (nr. of 
groups, usually HS groups,  vs nr. per group)

• Unbiasedness

– From the data, and the possible effects, evaluate whether 
there was no bias from selection, or from confounding 
effects, e.g. sires confounded with herd or management 
group



Example: Analysis of weaning weight for White Suffolk

data on 9700 animals, 15,000 in pedigree

Comparison of including or not including the correlation between 
direct genetic (A) and maternal (M) effects and the effect of 
ignoring maternal effects on estimating h2

Correlation A-M No correlation No maternal 

included effect

PhenVar      23.45 23.26 23.94

Heritability      0.25    0.04 0.19   0.03 0.44   0.03

Maternal Heritab.          0.28   0.04 0.18   0.02

Correl. direct-matern.   -0.44   0.10



Example: Analysis of weaning weight for White Suffolk

data on 9700 animals, 15,000 in pedigree

The effect of ignoring or including a permanent environmental 

effect (PE) of dams  

with PE without PE 

Phenotypic Var.      23.06 23.45

Heritability  (direct)             0.25   0.04 0.25 0.04

Maternal heritability            0.13  0.04 0.28 0.04

Corr Mat-Direct        -0.50 0.12 -0.44 0.10

Permanent Env. Ewe              0.12  0.02


