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Using gene testing In livestock

Parentage testing

Marker Assisted Selection
Marker Assisted Introgression
Marker Assisted Conservation

Development of transgenics



Selection for Quantitative Tralts
polygenes and major genes
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The distribution of QTL effects

Proportion of QTL

« Maybe 5-10 large QTL
explain the majority of the
genetic variance.

 Mapping experiments
should be able to detect

/\\ QTL as small as 0.20p?

Size of QTL (phenotypic standard deviations)

Many small QTL, few of large effect
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Marker assisted selection

1

+8 ? ?

Marked gene Other genes Genes
from sire from sire from dam

-2 ? ?

Progeny



How important is the marker information?

depends on:

Size of QTL effect
Frequency of QTL alleles

Probability that an M-animal has
Indeed a Q-allele



Direct Markers

No need for performance recording
No extensive family testing

Not very many examples (except the ‘obvious’)

Not always guaranteed
— false negatives (Double Muscling Example)
— false positives (If not the true gene)



Linked Markers

Need for performance recording within family
Need for genotyping (2 generations)

Linkage phase differs between families

Need heterozygous parent (sire)

— for marker genotype

— for QTL genotype



Normal Genetic Evaluation

e Performance information
™~ ERV

* Pedigree information/ average effe



Genetic Evaluation with QTL

* Performance information\

 Pedigree information/

Marker information
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Effect of MAS on rate of genetic gain

Selection after recording Selection before
recording
Gen 1 Gen 5 Gen 1 Gen 5
h“=0.11, Vor.=0.33 +21% +6% +45% +23%
h* = 0.27, Vor =0.33 +9% +2.3% +38% +15%
h®=0.27, Vor.=0.11 +1.3% +1.3% +8% +6%

Meuwissen and Goddard, 1996



Conditions that are good for MAS

Where heritability is low
— e.g. fecundity

Where the trait Is sex limited.

— e.g. milk production, fecundity

Trait not measurable before first selection

— e.g. milk production, longevity.
— Most traits when using juvenile selection.

Trait I1s difficult to measure.

— e.g. disease resistance, recessive conditions,

pigmented fibres, carcass traits



Discussion on simulation studies

They assume response in one trait
— Need whole breeding objective context

They assume abundant recording of pedigree and gene
testing

— Will we have cheap DNA testing available?

— We can apply strategies to save on genotyping.

— Some degree of phase-testing is needed

They assume gene effects are known
— Need monitoring by measurement

Effect of background genes, environment, gene action?



Conclusion on MAS

o Effect on extra gain in breeding programs
maybe limited to cases where

— There are special genes with large effect

— Disease resistance, Booroola, etc.

— Breeding objective traits are difficult to measure

— Some ‘retrospective measurement is needed’

— When reproductive technologies are used



Between versus within family selection

Young selection
candidates, e.g.
MOET or JIVET

No own information (performance or genotype):

Selection based on parent average

More between-family selection - more inbreeding




Between versus within family selection

Young selection
candidates, e.g.
MOET or JIVET

Own information (performance or genotype):

More variation within families

More within-family selection — less inbreeding



MAS combined with reproductive technologies

« Genotype testing provides within family
Information

e Exploiting this variation allows genetic gain
without jeopardizing inbreeding



Conclusions

Marker assisted selection can have some benefit
INn quantitative trait selection

— But genetic improvement should be driven by trait and pedigree recording

Reproductive & gene technology are synergistic

Malin application of gene technologies for ‘special cases’
— Large and special gene effects, disease resistance

Gene testing most useful in selection across breeds
— Introgression / genetic diversity



Whole Genome Association Studies (WGAS)

* A hype in science

“ Elucidating the inherited basis of genetic variation in

human health and disease is one of the major scientific
challenges of the twenty-first century”

« Main purpose is to find causal variants of diseases
« Additionally find associations with ‘complex traits

* Predicting phenotypes in: Medicine, Forensics, Breeding,
Animal and Plant production



SN PS (Single Nucleotide Polymorphism)

DNA code shows subtle variants

- The basis of genetic variation
These are genetic markers,
most common ones are called ‘SNPs’

Every 1 out of 450 base pairs is a SNP (there are ~7 million!)



Whole Genome Association Studies

60,000 test for DNA differences,
possibly predicting difference in
characteristics (or BV)
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SNP chip

60,000 test for DNA differences,
possibly predicting difference in
characteristics (or BV)
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SNP chip

Would also pick up differences in
genes close to the SNP marker
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production
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Why 57,000 SNPs in sheep SNP chip ?

LD

Every marker in
Linkage Disequilibrium (LD)
with a polymorphism

LD picture for sheep

e Threshold LD =0.2

0! \ \ Ak 1 e > ~ 50k base pairs
0 100 200 300 400 500
Distance (kb) B

Conclusion: Need about 3 billion/ 50k = 60,000 markers



WGAS challenges

* Analyse 50,000 effects in a dataset with 2000 animals recorded

— Many false positives
— Stringent criteria (= low power)

— How population specific are the predicted effects?

Methods:

— Fit SNP effect as random effects

— BLUP, Bayesian methods, Model selection of SNPs

— Use genomic relationships matrix

Concepts
— Are we predicting effects of genes,
or simply contributions of ancestors?
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Potential Outcomes of WGAS

Detection of causal variants

Prediction of phenotype

Prediction of breeding values

Elucidate architecture of genetic variation



Revealing the architecture of genetic variation

Where are the causes of genetic

variation?
Coat colour
.—.H:HEH D‘H‘D"_'|:|="_'|_|=' I_IEI
chromosome
CD8%

MCH




Prediction of phenotype

Genomic data helps predicting phenotypes, even across families

Correlation between actual and predicted phenotypes (sb over 10 reps)

Model Intra-family wise Inter-family wise

C olour %CD8 Coat colou (4 MCH

0.54 (0.02)  0.64(0.02)  0.41(0.01) 0.00 0.00 0.00

BLUP (Ignoring genotypic data)

Fitting genotypic data and pedigree

Mosel A 0.72(0.02)  0.71(0.02)  0.52(0.02) 0.58 (0.06)  0.50(0.05)  0.35(0.07)

Model AD~.0.89 (0.03)  0.73(0.02)  0.55(0.0 0.87 (0.05)  0.58(0.05)  0.36 (0.09)

Fitting genotypic data and ignoring pedigree
Model A 0.65 (0.02) 0.65 (0.02) 0.46 (0.04) 0.54 (0.06) 0.51 (0.05) 0.33 (0.06)

Model AD 0.85(0.04)  0.69(0.02)  0.50 (0.04) 0.81(0.08)  0.56(0.06)  0.33(0.09)




An alternative
approach to
determining
gene variants
that contribute
to a particular
trait is to
group all SMPs
together and
ask whether
they can
predict a

phenotype. ’

ad STATISTICAL GEMETICS

RESEARCH HIGHLIGHTS

Fitting phenotypes

Anabsing the results of genome-wide
asgociation studies is a painstaking
etfort — each SHF hasto pass
stringent significance thresholds
to bee regarded as o respectable
candidate. An alterrative approach to
determining gene variants that con-
tribute to a particular trait is to group
all 5MPs together and ssk whether
they can predict a phenotype. Cne
sxch method based cn o Bayesian
approach, has now been used to pre-
dict three mouse phe notypes. Similar
approaches could be useful in other
aress of medical genetics as well as
in forensics and artificial selection in
lvestocle

Bayesian approaches are well
maited tothe prediction of phenc-
types. The aim is not to test hypoth-
eses but o estimate the effect of each
P and to combine all the 5HP
effects into a prediction of phenctype
that is as accurate as possible. In this
paper. the authars have teste d the fea-
sibility of using o Bayesian spproach
called reversible jump Markor
chain Monte Carlo (BJMCMC) on
gename-wide SHPs to predict thee
phenotypes in beterogenenns stock
mice — coat colour, the percentage of
06" cells, and mean cellular haema-
globin {see the link fora description
of how these mice were congtructed).

The datn came from four genem-
fions of mios, over 2000 animals,
and consisted of 10,000 5HPs as well

as pedigres and phenctype informa-
tion, Genetic models were develaped
based on the full genotypic data bt
using the phenctypes of coby half the
animals, and then they were validated
by predicting phenotypes in the
remaining balf of the population.
The models incorporated sither
additive effects only ora mixtwre

of additive and deminance effects
{the AT maodsl).

Predictions were successful
across all traits — accuracy rangsd
from 0.4 to 0.9 — with AD models
being superior to additive-cnly
miedels; for example, coat-colour
predictions are 1% accurate under
the AD model B ore accurate pes-
dictions were obtained with traits,
such os CDE* percentage, that are
miore heritable — that iz, for
which more of the trait variation
between indiriduals actualby
depends cn genetic factors.
Fhenotypes were predicted acmss
famili=s but also within families;
in the btter case, predictions wens
enriched by pedigree informaticn
and therefors performed better.

Using genome-wide mformation
gave o marked improvement in
accuracy over using single SHFs o
even entire chromoesomes ot o time.
The high accuracy, compuatational
efficiency and speed of the anabysis
methiod (this dwtn set took 15 min-
utes to analyse) means that it could

NATURE REVIEWS | GENETICS VOLUME 9 | DECEMBER 2008

b adapted for use an additicnal
traits and langer samples, and for
cther species and applicatiors. This
paper builds cn previous work by the
authors that demorstrated the use
of dense SHF genotypes to predict
genetic value in lvestock and disease
risk in humans.
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Prediction of breeding value

e 2007: Dairy CRC and DPIVic 798 Australian dairy bulls

e Reference group: Genotyped to predict effects

e Validation group: Genotyped and predict EBV
and compare with progeny test

- Correlation ~ 0.6

nnnnn
uuuuuu

realized ABV based on progeny test
*
p

Trait 1

SNP predicted ABV




Genomic Selection

Dense markers allows to capture the right pieces of the genome

%111111

Allows to predict EBV of young animals accurately!

- Back to the black box!



Percent increase in rate of genetic gain

when using genomic selection
|

Selection on a single trait

160 -
140
Measured early,
120 +~ males and female
100 + " Measured late,
males and females
80
® Measured late,
60 females only
40 +~ Corr. Trait, rg = 0.9
20 -
B Corr. Trait, rg = 0.5
0 T 1 1
Acc = 30%; Acc = 30%; Acc = 50%; Acc = 50%;
h2=0.1 h2=0.5 h2=0.1 h2=0.5
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Relative change of response for multiple traits —
meat index annual gain in $S

3.00
21% increase
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Relative change of response for various traits
— wool index
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Carcass weight = 24 kg

Animal ID
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Conclusion

« SNP chips is likely to become a key tool
for animal selection

 Beneficial for traits that are hard to
measure (early In life)

* No pedigree information needed (?)



