# Crossbreeding

## **Reasons for crossbreeding**

- 1. Sire-Dam complementation
- 2. The averaging of breed effects
- 3. Grading up to a new breed
- 4. Step towards creation of synthetic/composite
- 5. To introduce a single gene
- 6. To exploit heterosis

# An example of the value of selection between breeds :

- 25 Bos Taurus breeds 71% of the variation in 72-week weight was due to breed effects (Thiessen et. al., 1984). Standard deviation within breeds was 33.5Kg and standard deviation between true breed means was 52.4Kg
- This gives the percentage variation that is due to breed:

$$100 \times \frac{52.4^2}{52.4^2 + 33.5^2} = 71\%$$

- Choose a breed just one standard deviation 'better' 52.4 Kg improvement
- Same as moving from eg. the average breed (50% standing) up to the breed with 84% standing, on a 0% (worst breed) to 100% (best breed) scale.

# An example of the value of selection within breeds :

| Age at calving: | 2 | 3 | 4 | 5 | 6 |
|-----------------|---|---|---|---|---|
| Bulls:          | 1 | 1 |   |   |   |
| Cows:           | 8 | 8 | 8 | 8 | 8 |

40 Cows x 0.8 gives 16 males + 16 females per year cohort.

| $p_{\rm m} = 1/16$   | giving | $i_{\rm m} = 1.970$ |
|----------------------|--------|---------------------|
| $p_{\rm f} = 8/16$   | giving | $i_{\rm f} = 0.798$ |
| L <sub>m</sub> = 2.5 | and    | $L_{f} = 4$         |

$$R_{yr} = \frac{i_m + i_f}{L_m + L_f} h^2 \sigma_P = \frac{1.970 + 0.798}{2.5 + 4} \times 0.4 \times 33.5 = 5.7 \, Kg \, / \, yr$$

## The comparison :

- Between breeds:52.4Kg
- Within breeds: 5.7Kg/yr
- Our selection between breeds is worth 9 years 2 months and 6 days selection work with breed!
- Selection between breeds is worth considering depending on costs and opportunities.

## Dominance and epistasis cause heterosis



**DOMINANCE** - wider genetic base leads to better performance

**EPISTASIS** - breakdown of favourable interactions leads to loss of performance

## **Dominance model of heterosis**

|                     | one gene pair        |      |     |       |     |    |  |
|---------------------|----------------------|------|-----|-------|-----|----|--|
|                     |                      |      | and | other | gei | ne |  |
| pair                |                      |      |     |       |     |    |  |
| Purebreed "A"       | Genes from sire: A   | A A  | A   | A A   | A   | A  |  |
|                     | Genes from dam : A   | A A  | A   | A A   | A   | A  |  |
|                     | Heterosis expression | = 0% |     |       |     |    |  |
|                     |                      |      |     |       |     |    |  |
| $F_1$ cross "A x B" | Genes from sire: A   | A A  | A   | A A   | A   | A  |  |
|                     | Genes from dam : B   | B B  | В   | в в   | В   | В  |  |
|                     | Heterosis expression | = 10 | ) % |       |     |    |  |

## **Dominance model of heterosis**

| 3 breed cross        | Genes from sire:    | С   | С  | С   | С | С | С | С | С |
|----------------------|---------------------|-----|----|-----|---|---|---|---|---|
| "C x (AxB)"          | Genes from dam :    | A   | В  | A   | В | A | В | A | В |
|                      | Heterosis expressio | n = | 10 | 0%  |   |   |   |   |   |
| Backcross            | Genes from sire:    | A   | A  | A   | A | A | A | A | A |
| "A x (AxB)"          | Genes from dam :    | A   | В  | A   | В | А | В | A | В |
|                      | Heterosis expressio | n = | 50 | 010 |   |   |   |   |   |
| F <sub>2</sub> cross | Genes from sire:    | A   | A  | В   | В | A | A | В | В |
| "(AxB) x (AxB)"      | Genes from dam :    | A   | В  | A   | В | A | В | А | В |
|                      |                     |     |    |     |   |   |   |   |   |

Heterosis expression = 50%

|           | How much heterosis? |
|-----------|---------------------|
| Purebreds | 0                   |
| F1        | 100%                |
| F2        | 50%                 |
| Backcross | 50%                 |

#### **Breed-of-origin heterozygosity**

 $\infty$ 

#### allelic heterozygosity



#### **Breed-of-origin heterozygosity**

 $\infty$ 

#### allelic heterozygosity



## **Epistasis**

## Material in book is

## **For reference only !**

## Dominance and epistasis cause heterosis



**DOMINANCE** - wider genetic base leads to better performance

**EPISTASIS** - breakdown of favourable interactions leads to loss of performance

## Additive x additive model of heterosis



### Where 'recombination loss' fits in



RecombinationAdditive x additiveloss, repistasis,  $E_{aa}$ 

The difference, equal to dominance, d

$$P(E_{aa}) = [p(r) + p(d)]/2$$

## **Crossbreeding parameters...**

• Direct additive effects  $A_{dl}$ ,  $A_{d2}$  and  $A_{d3}$  Additive effects of purebreeds. For yearling weight, they relate to the ability to grow quickly.

• *Maternal additive effects*  $A_{ml}$ ,  $A_{m2}$  and  $A_{m3}$  Additive effects of purebreeds as expressed by the dams of the crossbred individuals under consideration. They probably relate to milk production and rearing ability. Note that these effects add to zero - they describe the relative maternal performance of each pure breed.

• *Direct dominance effect*  $D_d$  The effect of heterosis in crossbred individuals, when fully expressed, as in an F1 cross.

• *Maternal dominance effect*  $D_m$  The effect of heterosis due to crossbreeding in the dam, when fully expressed, as in an F1 dam.

#### **Estimating crossbreeding parameters...**

💐 Cross Table (Yearling weight)

\_ 🗆 X

| 3  | Breeds 🔽                    | New Row | Rese       | et Table | Breed / Trai | it Upda             | ite I | Defaults | С     | lose | Calculate |                   |
|----|-----------------------------|---------|------------|----------|--------------|---------------------|-------|----------|-------|------|-----------|-------------------|
|    | –<br>Effects:<br>Value (Kg) | Ad1     | Ad2<br>280 | Ad3      | Am           | 7<br>11 Am2<br>6 .1 | Am3   |          | Dd 20 | Dm   | Merit     |                   |
| 1  | 1 x 1                       | 1       | 0          | 0        | 1            | 0                   | 0     | ] [0     | 0     | 0    | 294       |                   |
| 2  | 2×2                         | 0       | 1          | 0        | 0            | 1                   | 0     | ] [      | 0     | 0    | 279       |                   |
| 3  | 3×3                         | 0       | 0          | 1        | 0            | 0                   | 1     | ] [      | 0     | 0    | 267       |                   |
| 4  | 1×2                         | 0.5     | 0.5        | 0        | 0            | 1                   | 0     | [ [      | 1     | 0    | 309       |                   |
| 5  | 1 x 23                      | 0.5     | 0.25       | 0.25     | 0            | 0.5                 | 0.5   | [ [      | 1     | 1    | 318       |                   |
| 6  | 1 x 12                      | 0.75    | 0.25       | 0        | 0.5          | 0.5                 | 0     |          | 0.5   | 1    | 311.5     | $\mathbf{\nabla}$ |
| 7  | 2 Br Bal Comp               | .5      | .5         | 0        | .5           | .5                  | 0     | Γ.       | .5    | .5   | 301.5     |                   |
| 8  | 3 Br Bal Comp               | .3333   | .3333      | .3333    | .33          | 33 .3333            | .3333 | Γ.       | .667  | .667 | 299.982   |                   |
| 9  | 2 Br Opt Comp               | .63     | .37        | 0        | .63          | .37                 | 0     | Γ.       | .47   | .47  | 302.55    |                   |
| 10 | 3 Br Opt Comp               | .57     | .31        | .12      | .57          | .31                 | .12   | Γ.       | .56   | .56  | 302.91    |                   |
| 11 | 2 Br Rotation               | .5      | .5         | 0        | .5           | .5                  | 0     | Γ.       | .667  | .667 | 306.51    |                   |
| 12 | 3 Br Rotation               | .3333   | .3333      | .3333    | .33          | 33 .3333            | .3333 |          | .86   | .86  | 305.772   |                   |

## Crossbreeding: More 'structure' gives more merit ...

In general ...

The shorter the breed pedigree back to purebred parents:



• the more heterosis can be expressed.

•the more sire-dam complimentarity can be expressed

BUT: The more expensive the operation is to run

## Loss of heterosis and complimentarity ...

#### **3-Breed Cross**



#### **Rotational Cross**



## Loss of heterosis and complimentarity ...

#### **Rotational Cross**



# Which crossing system to adopt?

| PUREBREED                   | when no cross is better.                                                                                                                                                                                                                                                     |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F <sub>1</sub> CROSS        | when direct heterosis is important.                                                                                                                                                                                                                                          |
| 3 BREED CROSS               | when both direct and maternal heterosis are important.                                                                                                                                                                                                                       |
| 4 BREED CROSS               | when paternal heterosis is important as well.                                                                                                                                                                                                                                |
| BACKCROSS                   | when only 2 good parental breeds are available and/or when direct heterosis is not important.                                                                                                                                                                                |
| ROTATIONAL CROSSES          | when females are too expensive to either buy in or to produce in the same enterprise.                                                                                                                                                                                        |
| OPEN OR CLOSED<br>COMPOSITE | when both males and females are too expensive. A<br>few initial well judged importations establish the<br>synthetic (or 'composite'), and it can then either be<br>closed (which helps to establish a breed 'type'), or left<br>open to occasional well judged importations. |

## Patterns of use of crossbreeding

| Industry       | Fecundity | Typical crossing systems     |
|----------------|-----------|------------------------------|
| Poultry        | highest   | 4-breedcrosses               |
| Pigs           |           | 3-breed crosses;back crosses |
| Meat sheep     |           | 3-breedcrosses               |
| Wool Sheep     |           | purebred*                    |
| Dairy          |           | purebred*                    |
| Temperate Beef |           | rotations;composites         |
| Tropical Beef  | lowest    | composites                   |

\*Wool sheep and dairy industries are exceptions due to availability of an outstanding pure breed in each.

# Exploiting both between and within breed variation

- Designing crossbreeding systems based on breed means
- Actually selecting animals based on within breed EBVs
  - E.g. mate merinos with the best BL ram
  - Use the best Angus bulls for rotational crossing
  - Etc.
- Could also use across breed EBV (not always) but that does not exploit heterosis

## 'Automatic design' through mate selection.

| EBV<br>Cost | <b>+2</b><br>0                       |                       |                                      | 4                       | + <b>20</b><br>10                    |                  |
|-------------|--------------------------------------|-----------------------|--------------------------------------|-------------------------|--------------------------------------|------------------|
| +20         | Crossing:<br>EBV:<br>Cost:<br>Total: | 300<br>11<br>0<br>311 | Crossing:<br>EBV:<br>Cost:<br>Total: | 310<br>12<br>-10<br>312 | Crossing:<br>EBV:<br>Cost:<br>Total: | 325<br>20<br>-10 |
| +50         | Crossing:                            | 318                   | Crossing:                            | 308                     | Crossing:                            | 300              |
|             | EBV:                                 | 26                    | EBV:                                 | 27                      | EBV:                                 | 35               |
|             | Cost:                                | -3                    | Cost:                                | -13                     | Cost:                                | -13              |
|             | <i>Total:</i>                        | <b>341</b>            | <i>Total:</i>                        | 322                     | <i>Total:</i>                        | 322              |
| +40         | Crossing:                            | 290                   | Crossing:                            | 320                     | Crossing:                            | 327              |
|             | EBV:                                 | 21                    | EBV:                                 | 22                      | EBV:                                 | 30               |
|             | Cost:                                | -2                    | Cost:                                | -12                     | Cost:                                | -12              |
|             | <i>Total:</i>                        | <b>309</b>            | <i>Total:</i>                        | 330                     | <i>Total:</i>                        | <b>345</b>       |

### Mate allocations ...



### Linear Programming approach Jansen and Wilton (1985)

| $\begin{array}{c} \text{Bull} \rightarrow \\ \text{Cow} \downarrow \end{array}$ | 1   | 2   | 3   | Dummy<br>bull |
|---------------------------------------------------------------------------------|-----|-----|-----|---------------|
| 1                                                                               | 311 | 312 | 335 | 999           |
| 2                                                                               | 341 | 322 | 322 | 999           |
| 3                                                                               | 309 | 330 | 345 | 999           |
| Dummy<br>Cow                                                                    | 999 | 999 | 999 | 999           |

Maximise sum of merit of chosen cells, with constraints such as:

- Max. one mating per cell
- Max. one mating per female
- Max. *d* matings per male

## Does bull ranking depend on mate breed?

| EPD's         | Angus Bull<br>No. 1 | Angus Bull<br>No. 2 | Angus Bull<br>No. 3 |
|---------------|---------------------|---------------------|---------------------|
| Angus cows    | +++                 | ++                  | +                   |
| Hereford cows | +                   | ++                  | +++                 |
| Brahman cows  | -                   | ++                  | +                   |

#### If "Pure-Cross correlation" were less than 100% ...



#### If "Pure-Cross correlation" were less than 100% ...



## Conclusion about crossbreeding

- Design optimal structure based on breed parameters (averages)
- Operationally: select and mate based on EBVs and predicted heterosis
- Non-additive effects not important for selection within lines or breeds