

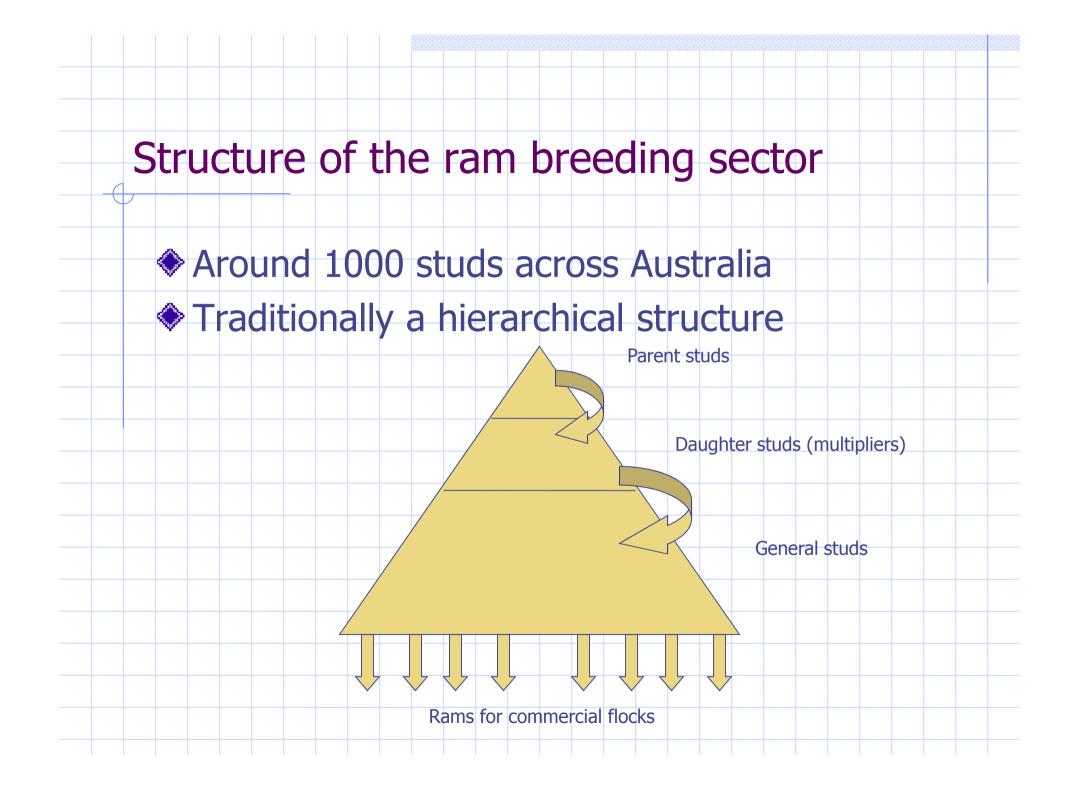
Introduction

- The production and ram breeding sectors of the Merino industry
- Breeding objectives
- Genetic evaluation
- Breeding programs

Trends in commercial Merino production

- 85% of sheep are Merinos
- Income from wool has historically dominated meat
- Meat prices are now high relative to wool:
 - Dual purpose focus in many commercial enterprises
 - Widespread use of terminal sires over Merino ewes
- Specialised wool flocks more likely to be fine wool

Future challenges


Drought and reduced sheep numbers

- Low wool prices
- Phase out of mulesing by 2010

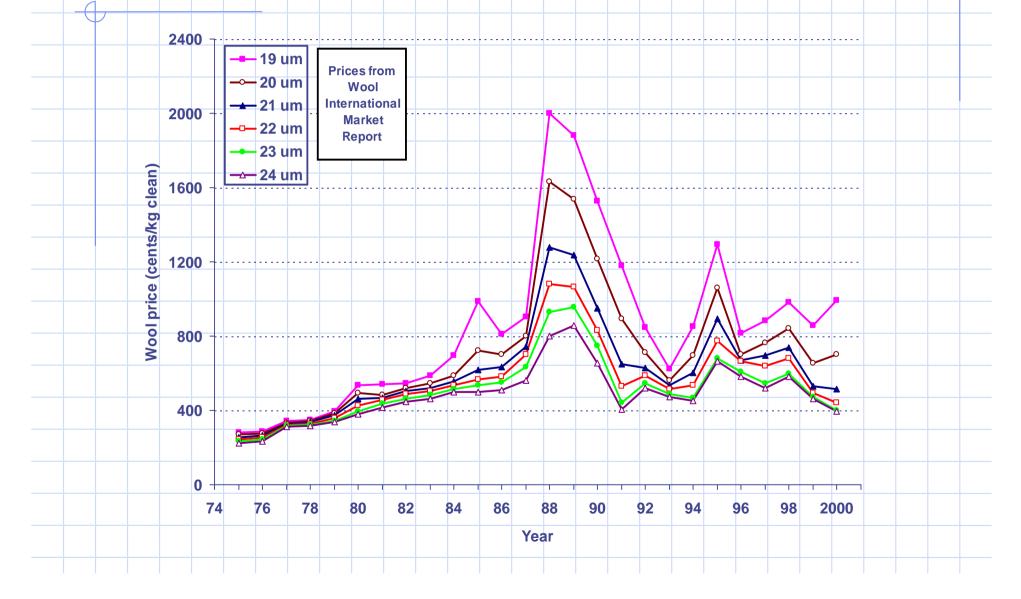
Comparison of enterprises

Enterprise	Gross Margin (\$/DSE) 5 year average prices	Gross Margin (\$/DSE) July 2003 prices
Merino wethers (17 µ)	27.50	41
Merino wethers (19 µ)	22	19
Merino wethers (21 µ)	12	21
Merino ewes (17 µ)	31	48
Merino ewes (19 µ)	28	34
Merino ewes (21 µ)	22	36
First cross lambs	17	38
Second cross lambs	13	36

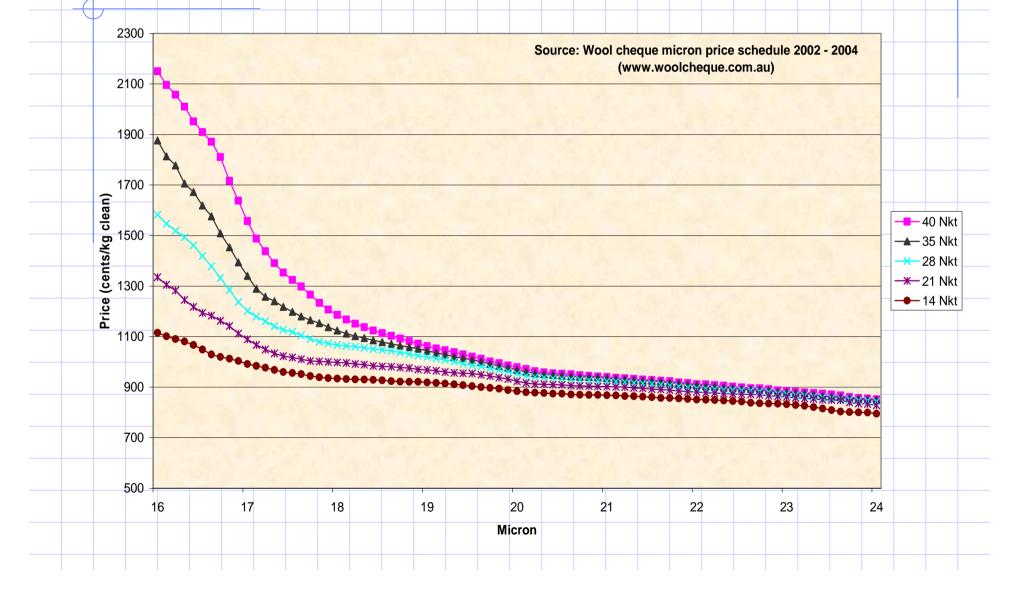
Structure of the ram breeding sector

- Group breeding schemes appeared in the 1970's:
 - Open nucleus schemes (see Turner and Jackson)
- Australian Merino Society (AMS)
 - http://www.ausmerino.com.au/

Structure of the ram breeding sector


Development of across flock evaluation in the 1990's:

 Use of performance data and AI led to breakdown of parent – daughter stud relationships


Breeding objectives

Economically important traits: Wool production (fleece weight) Wool quality (fibre diameter, staple strength, style) Reproduction Disease Growth and carcass Feed intake Easy care and welfare related traits (e.g. mules) free sheep)

Wool price between 1974 and 2000

Fibre diameter and staple strength are the major determinants of wool price

Heritabilities of wool traits:

(From Safari et al 2005, LPS 92:271)

	h ²	h ²	m ²
GFW	0.37	0.25	0.08
Yield	0.56	-	-
CFW	0.36	0.28	0.06
MFD	0.59	-	-
FDCV	0.52	-	
SS	0.31	-	
SL	0.46	-	-

Important genetic correlations for wool traits

Antagonistic:

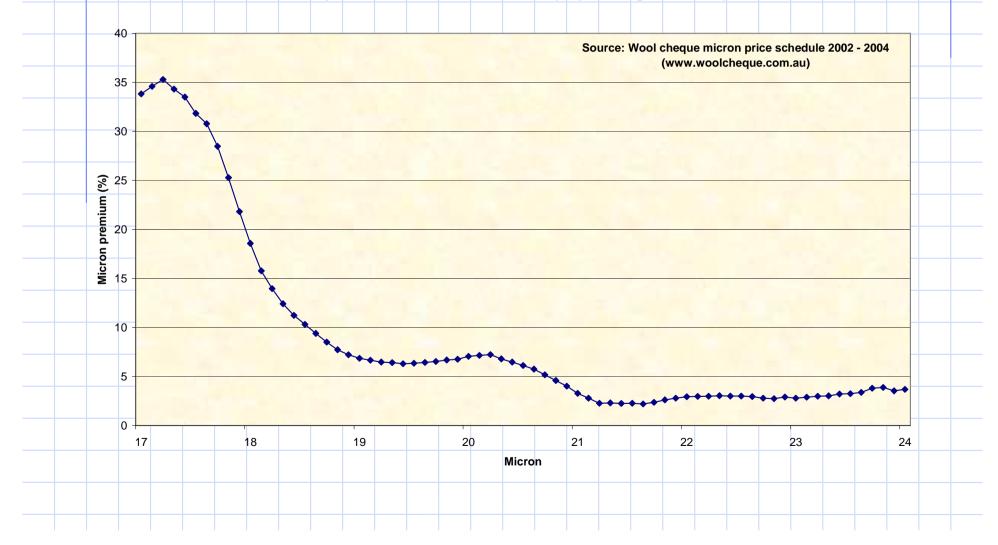
■ Fleece weight and fibre diameter (≈0.3)

Fibre diameter and staple strength (0.37)

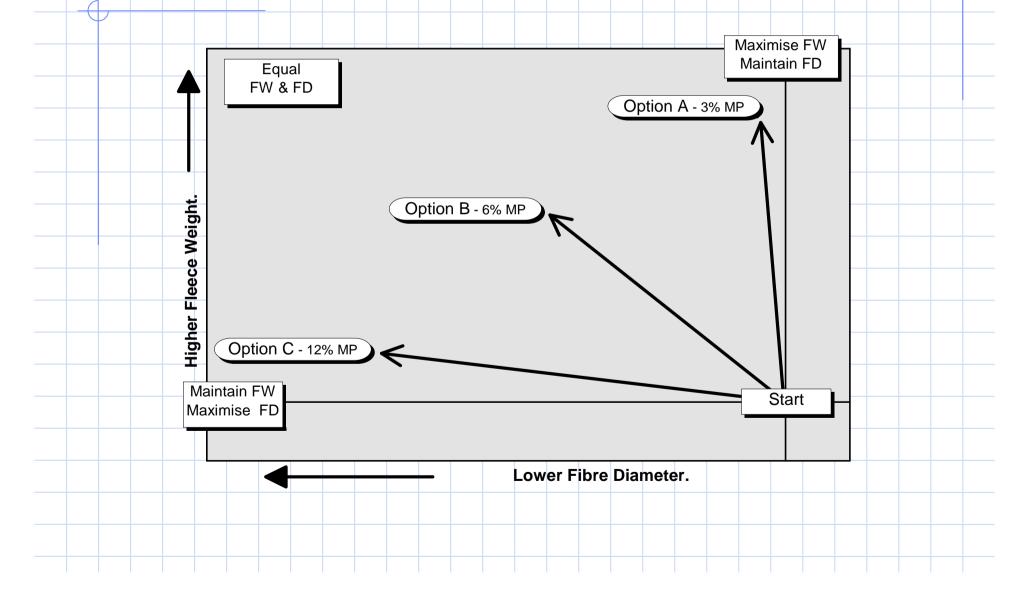
Favourable:

Clean and greasy fleece weight (0.86)

CV of fibre diameter and staple strength (-0.52)


(From Safari et al 2005, LPS 92:271)

Combining wool traits in breeding objectives


- Fleece weight fibre diameter relationship is critical
- Wool quality traits included in objectives using *price premiums*.
 - 1 micron reduction in FD gives a 10% increase in price → 10% Micron Premium
 - The price premium approach can be used for any wool quality trait (eg. staple strength, style)

What micron premiums exist?

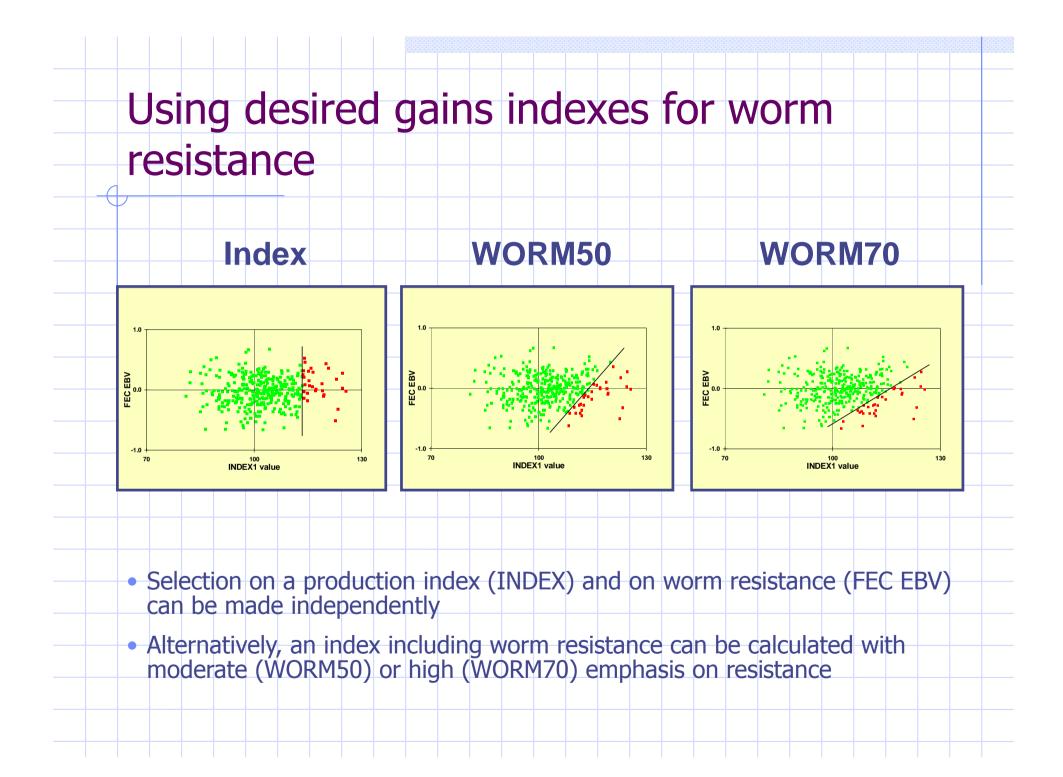
Micron premiums between 2002 and 2004 (staple strength >= 21 Nkt)

Fleece weight – fibre diameter response under different micron premiums

Reproduction is lowly heritable, but highly variable

Lambs weaned	0.07	63
Fertility	0.08	51
Litter size	0.10	38
Survival	0.03	47
Body weight	0.41	12

Reproduction genetic correlations


	Lambs weaned	Fertility	Body weight
Fertility	0.73		
Body weight	0.33	0.40	
Scrotal size	0.20	0.20	0.60

Breeding for disease resistance

- Major diseases of sheep:
 - Gastrointestinal roundworms (WEC)
 - Fleece rot and fly strike
 - Foot rot
 - Johne's disease
- Breeding for parasite resistance has been demonstrated in research flocks:
 - CSIRO and WA Agriculture selection lines

Disease resistance is difficult to include in breeding programs

- Hard to measure production losses
- Seeders reluctant to expose animals to disease
- Difficult to analyse parasite resistance data:
 - Trait distributions not normal
 - Different species of parasite across flocks
 - Different challenge history
- Value of correlated traits and gene markers

The development of breeding objectives

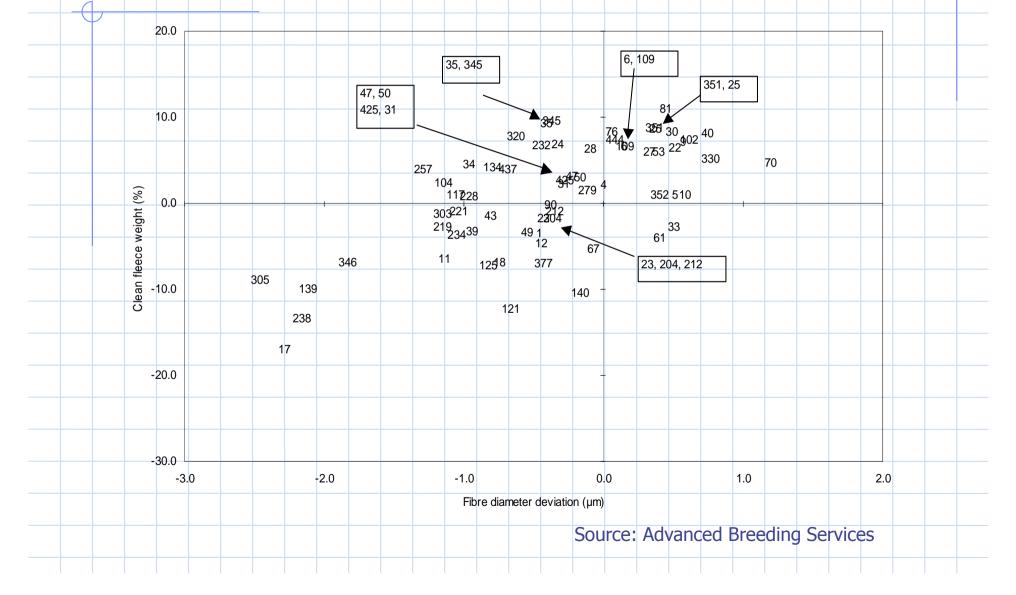
- Woolplan in the 1980's attempted to provide objectives to industry:
 - Too prescriptive, poor adoption
- Rampower in the 1990's:
 - Industry standard objectives (3, 6, 12 MP)
 - Emphasis on indexes customised for individual breeders
- Sheep Object software to develop customised indexes:
 - To be delivered through SGA

Genetic evaluation

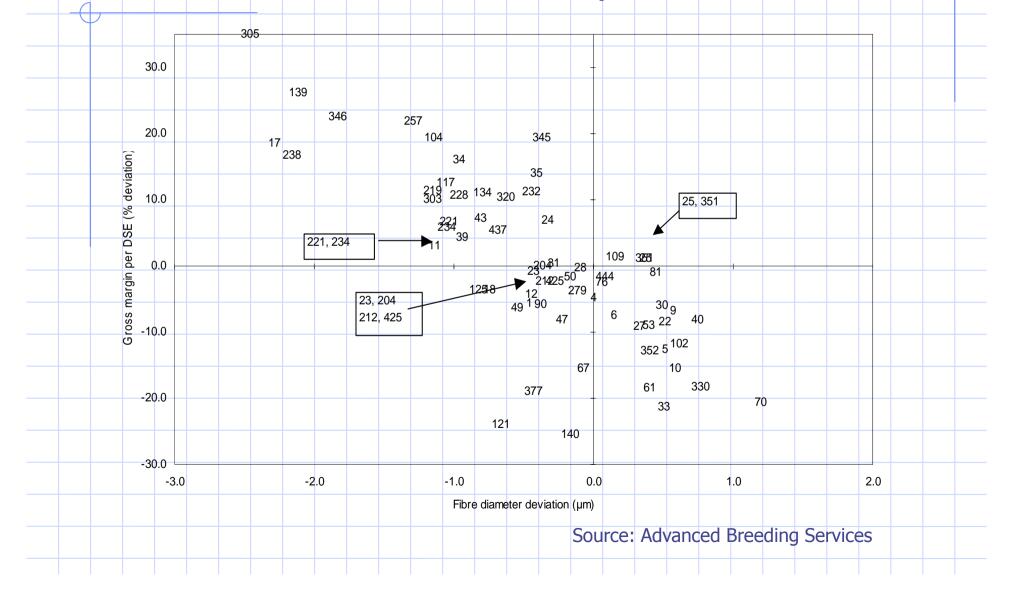
- Across flock comparisons:
 - Wether trials
 - Central test sire evaluation (CTSE)
 - On-farm progeny testing, across-flock BLUP, Sheep Genetics Australia (SGA)

Large differences between flocks:

• Production traits \rightarrow profitability


An aid to commercial growers:

Compare current and potential ram sources



Comparing up to 200 ram breeding flocks

Wether trial bloodline comparison data

Wether trial bloodline comparison data

Limitations of wether trials

Commercial flocks representing studs:

Time lag (10-20 years?)

No information on breeding goals and genetic trends

Central test sire evaluation (CTSE)

- Independent progeny testing of industry sires
- Linked sites across Australia testing around 100 sires annually
- Measure progeny for a range of measured and visual traits
- Merino Superior Sires report

Top performing sires are used widely

Þ• 🔶 · 🥰 😣 🚷 👺	http://ms	is.csiro.a	u/wool.	php?sort=	=M7%25						• 0 0	io C.	
Latest Headlines 📋 CSIRO :: Web Mail	s M	Gmail - I	nbox [🦲 Google	e Calend	ar 🗋 P	icasa W	eb Albu	ims smh T	he Sydne	y Morning		
CHOOL STREET								<u>hor</u>	<u>me ab</u>	out co	<u>ntact us</u> <u>a</u>	acknowle	dgement
merinosuperior sires	sire sear	ch fine	e wool	mediur	n wool	fine+r	nediun	1					
				_									
Fine+Medium Wool	Sire	s - 2	2006	5									
Chor	ose trail	ts Chi	oose s	subset	Show	accura	icies	Define	e custor	n \$inde	X		
Pages 1 9 9 4 5 6 7 9	0 10 1	1 10 10	141	E 16 17	10.10	00.01		24.25		00 00 M	out a fall Es	6 circo	
Pages 1 <u>2 3 4 5 6 7 8</u>													
Sire	Prog. 75	<u>hctw</u> 14.4	-0.2	<u>hfdcv</u> -2.9	-28	<u>hqfw</u> 15.0	<u>hss</u> 9.8	<u>hwt</u> 2.0	hculls -12	htops 22	DP3.5% 141	<u>M14%</u> 150	M7% A
Nerstane, 990043 Hazeldean, 7,1048	115		-1.7	-0.2	-20	4.8	9.0	2.0	-12	6	141	145	156 150
Roseville Park, 6.3886	31	11.6	-1.7	-0.2		9,4		3.5	-4	10	142	145	149
Pooginook, Boxer	16	12.2		-0.0		13.5		2.6	-4	10	142	138	149
Toland, W611	82	20.7	0.7	-0.0		9.7	4.9	0.5	-5	4	140	130	145
Gotta Rock, 5-91	40	11.5	0.2	-2.3		12.5	4.9	4.6	-2	4	140	134	143
The Grance, 910600	107		-1.9	-2.5	-4	-0.7	1.4	-1.9	-2	4	137	137	143
East Bungaree Poll, Aztec 2897	134		-1.3	3.4	-37	15.4	-1.3	3.0	-1	5	143	132	142
Hazeldean, 7.6561	230	19.8	-0.7	-1.0	-57	19.4	2.5	0.6	-5	1	130	132	141
North Ashrose Poll, MZ16	230	10.1	1.1	-0.7	4		11.5	8.3	-2	9	155	129	141
Toland Poll, B178	68		-1.1	-1.7		2.7	6.5	2.1	-5	3	130	141	140
Billandri, 940090	34		-1.0	0.7		4.8	0.3	2.1	-1	3	134	133	139
Romilly Hills, SOH12	42	13.6	0.0	-2.5	-15	11.7	4.8	6.2	-5	9	138	131	138
Winyar, 02	34		-0.2	-0.9		6.6	2.0	2.1	1	6	136	130	137
Eastville Park, Wal	41	18.8	0.8	1.7	6	10.9	3.0	6.3	1	-1	151	121	137
The Yanko, 93.111	41		-1.1	1.2		2.9		2.5	-2	-1	140	126	137
Kerrsville, NB 6040	62	2.7	-2.6	0.0	22	2.2	-1.0	1.1	1	3	130	136	136
Hazeldean, 7.64	24	13.8	0.3			14.4		4.1	3	4	147	118	134
Hazeldean, 5.3356	77	17.2	-0.5	-1.5		14.4		-5.2	7	-6	106	132	133
Nerstane, 225	102	22.7	0.1	-2.7		17.7	7.9	0.7	-16	23	116	128	133

http://mss.csiro.au

Pro's and con's of CTSE

Pro's: Independent comparison run under strict guidelines Run by breeders Data structure useful in combining on-farm data Con's: Limited number of sires compared Progeny testing time lag

On-farm across-flock evaluation

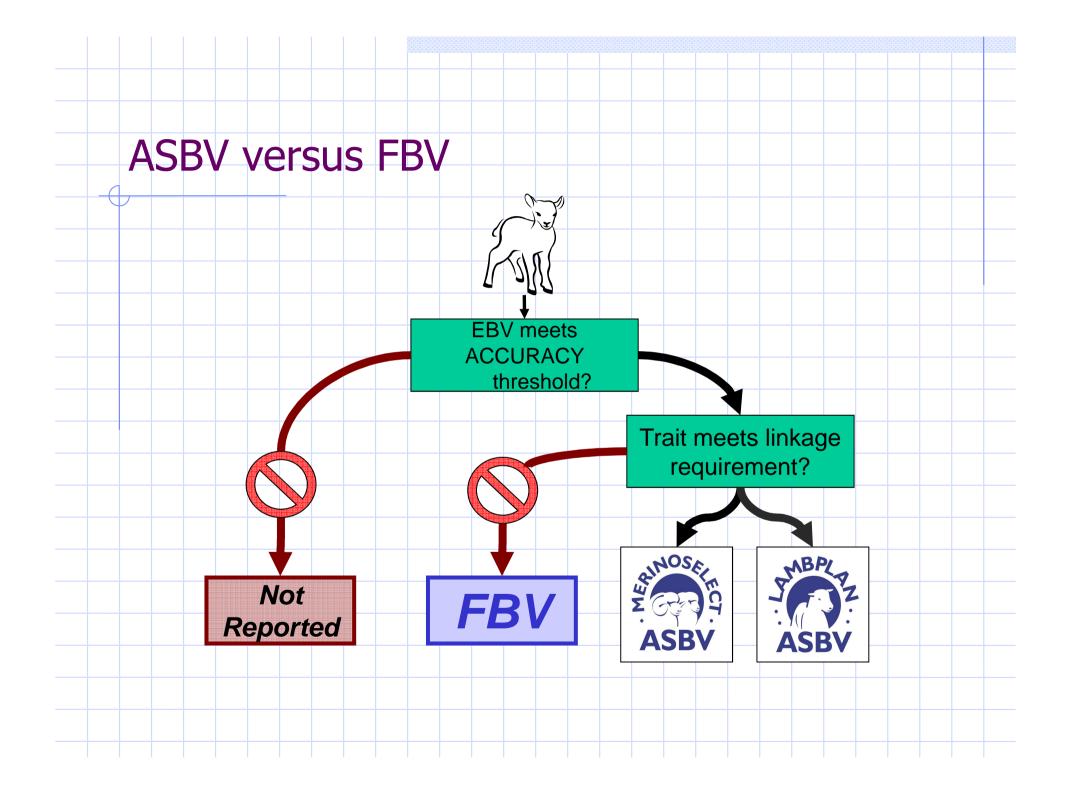
- The future of genetic evaluation for Merinos
- Began with Merino Benchmark
- Merino Genetic Services (MGS)
- Now replaced by Sheep Genetics Australia

Sheep Genetics Australia (http://www.sheepgenetics.org.au)

Launched October 2005

Merging of several databases, including onfarm and CTSE data

Merino analysis is MERINOSELECT:

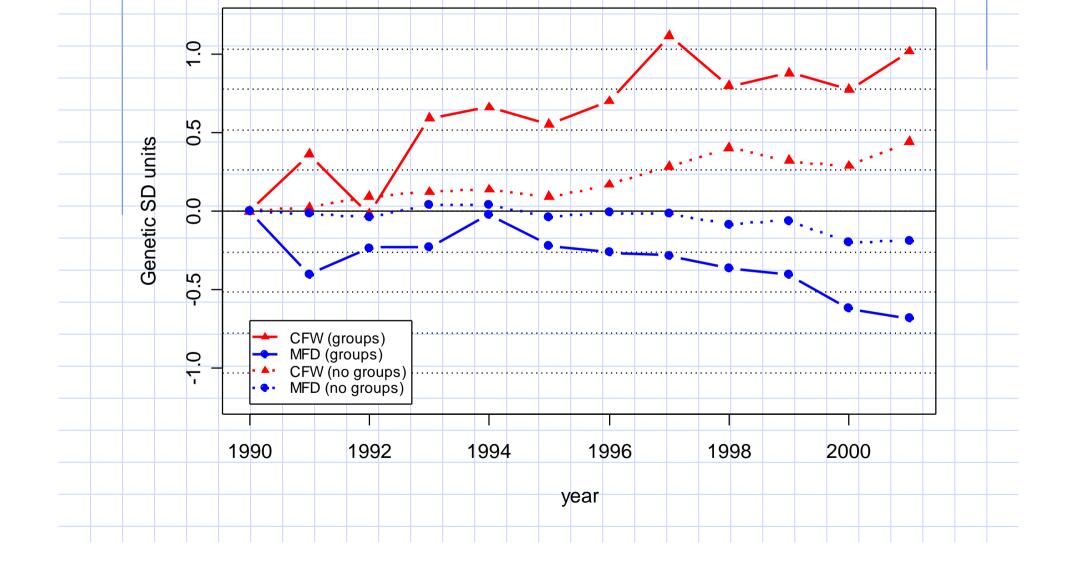

Currently including around 1 million animals

MERINOSELECT

- Data integrity underpinned by QA guidelines
- Data analyses run fortnightly:
 - Testing of flock linkage
 - BLUP analysis using OVIS
- Reporting using a common language:
 - Australian Sheep Breeding Values (ASBV) or Flock Breeding Values (FBV)
 - Standardised trait definition

MERINOSELECT breeding values

Age	Carc	ase	W	loo	Health	Reproc	luction
	Weight	FAT & EMD	Weight	Quality	WEC	Scrotal Circ.	No. lambs born and weaned
Birth	\checkmark						Maternal
Weaning	\checkmark				\checkmark		Weaning Weight
Post Weaning	~	~			~	\checkmark	
Yearling	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	
Hogget	\checkmark	\checkmark	\checkmark	✓	~	\checkmark	
Adult	✓		✓	~			
							\checkmark

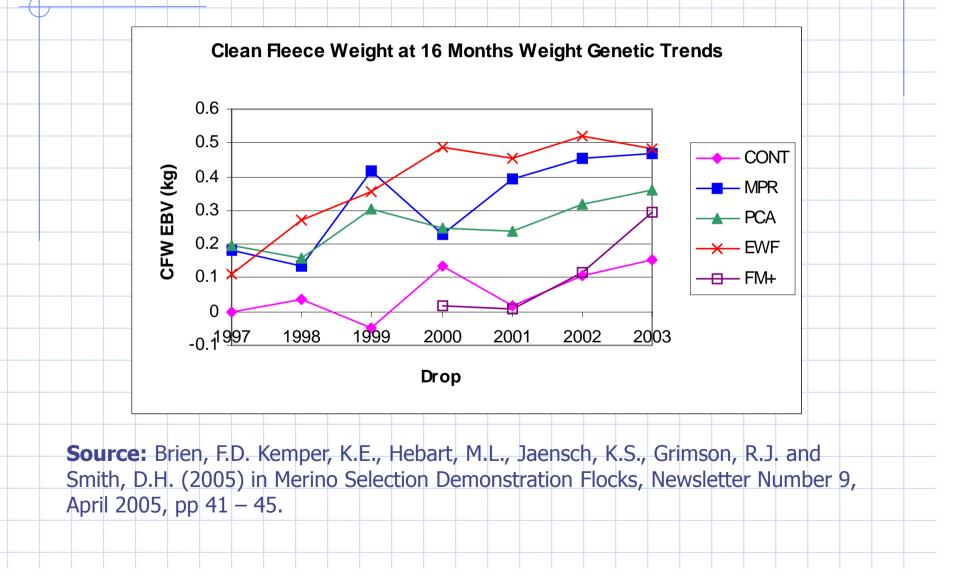

Genetic groups are a feature of the MERINOSELECT analysis

Flock – time period genetic groups:

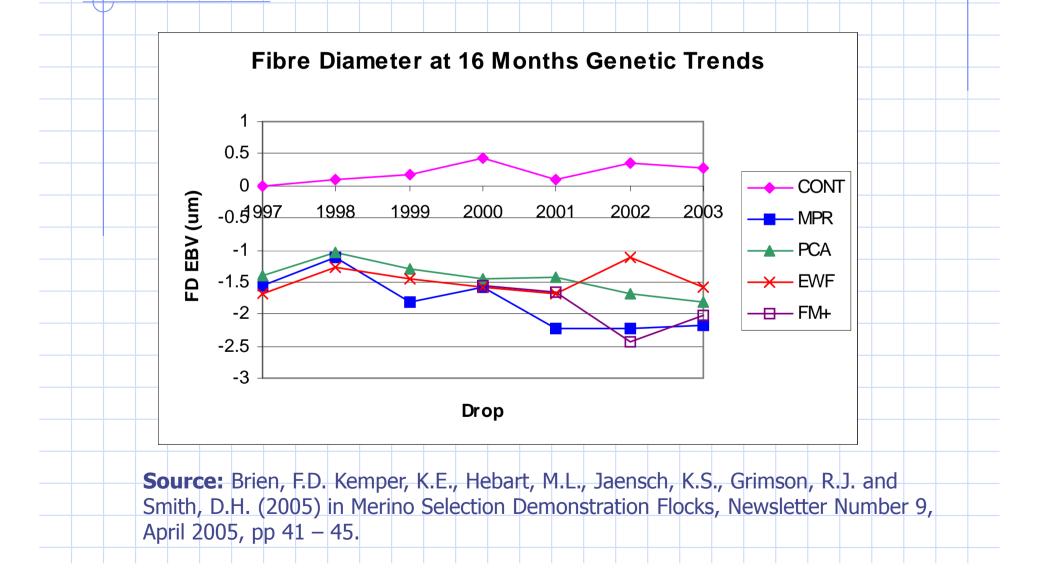
 Flock groupings to account for the wide range in merit within the Merino breed for many traits

 Time period groupings within flocks to help estimate genetic trends where pedigree is sparse (often sire only)

Time pedigree groups improve estimation of trends in a flock with sire only pedigree


Breeding programs

Breeding goals based on improved productivity are generally accepted There are diverse views on how to attain these goals: Traditional visual assessment Measurement based programs Skin based programs (eg. http://www.srswool.com)


The SARDI Merino Selection Demonstration Flocks (SDF)

Five selection flocks: Control (CON) Measured performance (MPR) Visual assessment by sheep classers (PCA) Elite wool / SRS (EWF) Meat Merino (FM+) Selection by industry participants (breeders, classers etc), to a common breeding goal

CFW response in SDF selection lines

MFD response in SDF selection lines

Hogget fleece value (\$ / head) in the 2002 drop SDF progeny (3yr prices)

CON	40.15	37.01
1PR	58.38	51.05
PCA	55.14	45.79
EWF	50.73	45.34
=M+	58.99	48.67

Key messages - 1

- Traits of importance for Merinos:
 - Fleece weight fibre diameter relationship
 - Price premium approach to including wool quality traits
 - Reproduction traits lowly heritable but highly variable
 - Breeding for disease resistance is possible
 - Desired gains approach to combine resistance with production traits
 - Growing importance of growth and carcass traits

Key messages - 2

Large variation between ram breeding flocks for production traits:

 Usefulness of wether trial data, particularly for commercial growers

Development of across flock evaluation leading to MERINOSELECT

Alternative breeding philosophies:

 Common goals, different approaches to animal selection

Thank you!

