
Genetic improvement of socially 
affected traits

Predicting response to selection
Impacts on breeding program design



Empirical results

1. Selecting on group performance rather than 
individual performance may be beneficial

2. Relatedness among group members plays a 
key role



� Cannibalistic laying hens

� No beak-trimming

� 7 generations of selection:
� FS-Group Selection for egg number

� Select the FS-group with highest egg number

� Control

� Individual Selection for egg number

� Select the individual with highest egg number

Mortality due to cannibalism in laying hens 
(Bill Muir)

Muir, W.M.  1996. Poultry Science 75:447-458 



Mortality in the final generation
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6 out of 12 alive

The resulting birds

Individually selected



12 out of 12 Alive

Group selected

The resulting birds



Group vs. individual selection in plants

� Goodnight, 1985
� Group vs. Individual Bi-directional 

Selection for Leaf Area in Cress 
(tobacco)

� Group Selection produced a 
Positive responses in both 
directions

� Individual selection Failed in both 
directions

� Correlated response in competitiveness



Plant breeders use group selection
Natural selection for individual fitness

→ competition

Artificial selection for clone group yield

Rice

Corn

Group selection also increases uniformity 



Can animal breeders achieve the same?

Can we breed for decreased competition, and does that improve uniformity?



Conclusion

Selection between groups can be very 
effective



6wk weight in quail, selection on EBV

� Experiment of Bill Muir

� Experimental Model

� Quail

� Trait: 6 Week Weight (wt)

� Selection Methods applied:

� Animal Model BLUP (AM-BLUP)

� Selection for classical EBV

� Competitive Model BLUP: (CE-BLUP) 

� Selection for ETBV

� ETBV = EDBV + (n-1)ESBV 

� Selected for 25 Hatches   



Results: 6 Week Weight
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Genetic Trend: Direct breeding value

�AM-BLUP
� CE-BLUP



Mortality at Termination of Experiment (Hatch 25)
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Conclusion

Selection on EBV can also be effective



Theory of response to selection



Predicting response to selection

1. The general expression
1. Applications to individual selection
2. Application to group selection

2. A selection index approach
3. Sib and progeny testing schemes



General expression for ∆G (additive model)

TBVIHirG σ=∆
- i = selection intensity
- rIH = accuracy = correlation between selection criterion and TBV

- σTBV = (total) genetic standard deviation

This is simply the mean TBV of the selected parents, expressed as a
deviation from the mean TBV of all individuals

This result can e.g. be derived from Price’s Theorem (Lynch and Walsh)

-∆xavg = Cov(w,x)/wavg

You can also regress the TBV on the selection criterion



Accuracy

Application 1

Selection on individual phenotype 
(mass selection)



Example1: accuracy of mass selection with unrelated group members

� Selection criterion = Pi → Accuracy: Corr(Pi,TBVi)
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Negative response may occur when: 
- Direct and social effects are negatively correlated
- Social effects are relatively large



Example 2: accuracy of mass selection with related group members
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Accuracy depends on 
relatedness (r) among group 

members

r is the average
relatedness among

group members



Effect of relatedness on accuracy
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Example 2: accuracy of mass selection with related group members

Inputs

n = 8

Var(PD) = 1

Var(PS) = 0.2

hD
2 = hS

2 = 0.3

rA,DS = -0.6

Relatedness among group members increases the accuracy of mass selection



Example 2: accuracy of mass selection with related group 
members
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-Relatedness equals the proportion of selection 
pressure that acts directly on the TBV

-With full relatedness among group members
accuracy is always positive
→ Relatedness prevents increased competition

This is like √h2

Accuracy can also be expressed as:
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� Phenotypic variance
� Phenotypic variance also depends on relatedness

� Var(P) = Var(P)within + Var(P)between

� Var(P)between is the variance of the group means

� Effects of relatedness
� Relatedness increases the variance between groups

� Relatedness decreases the variance within groups

� The net effect is that Var(P) usually increases with r
� This is like wright’s F-statistics

Example 2: phenotypic variance with related group members
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Example 2: phenotypic variance with related group members

Inputs

n = 8

Var(PD) = 1

Var(PS) = 0.2

hD
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rA,DS = -0.6

Relatedness among group members increases phenotypic variance

Effect of relatedness on var(P)
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- With full relatedness, there is no hidden genetic variance
- Var(P) = Var(TBV) + non-genetic variance

- This is because, with r = 1, an individuals TBV is an element of its phenotype

- Pi = AD,i + Sum(AS,j) + non-genetic terms

- r = 1 → AS,j = AS,i → AD,i + Sum(AS,j) = AD,i + (n−1) AS,i

- Pi = TBVi + non-genetic terms, just like P = A + E

Example 2: phenotypic variance with related group members

If Pi = TBVi + non-genetic terms, then mass selection directly targets 
an individual’s TBV 
→ that’s why relatedness prevents negative accuracy



Accuracy

Application 2

Selection of individuals based on group performance 

(Group Selection)



23    5.7

15     15

19    6.3

26     6.5

Individual vs. Group Selection

Group Selected

Per 
cage

Per 
individual

Eggs

Individual Selected



The degree of group selection (g) 

� g represents the degree of between-group selection
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g is on the same scale as relatedness (0,1)



Example3: accuracy of group selection with unrelated group members

� Selection criterion = I i ,  Accuracy: Corr(I i,TBVi)
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g is the proportion of selection pressure that acts directly on the TBV

The effect of g is very similar to that of relatedn ess

0,),( =rgTBVPCov



Effect of either r or g on accuracy

Impact r or g on accuracy
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Group selection (with r = 0)

The difference is here
- Accuracy increases more with r than with g
- Accuracy crosses 0 at same value of r = g

Relatedness has the biggest impact



Example 4: accuracy with both group selection and relatedness

� Selection criterion = I i ,  Accuracy: Corr(I i,TBVi)
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The numerator of this expression is symmetric in g and r →
relatedness and group selection have the same impact on the sign of rIH



Accuracy as a function of both g and r

Accuracy as a function of g
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Conclusions
- Accuracy increases almost linearly with r
- For g > ~0.4 accuracy increases only little

Check for your own genetic parameters!

Inputs
n = 8
Var(PD) = 1
Var(PS) = 0.2
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rA,DS = -0.6



Response to selection

A selection index approach



Basics of selection index theory
� Improvement of multiple traits, using multiple observations
� Problem: how to optimize selection?

� E.g. The best animal for growth rate may be poor for feed intake

� How to weigh all the info in an index?

� Step 1: Define the breeding goal (H)
� H = v1A1 + v2A2 + … + vkAk = v’a
� k is the number of traits to be improved

� Ai is the true breeding values for trait i
� vi is the (economic) value of trait I

� Step 2: define the index (I)
� I = b1x1 + b2x2 + ….. + bmxm = b’x
� m is the number of observations for each individual

� xi is the ith information source

� bi is the index weight on the ith information source

� Step 3: find b so that accuracy is maximized



Basics of selection index theory
� Step 3: Find b so that accuracy is maximized

� Optimum index weights: b = Cov(x,H)/Var(x)

� b is the vector of regression coefficients of H on x
� Substitute H = v’a →→→→ b = [Var(x)]-1 Cov(x,a) v
� Usual notation: b = P-1Gv
� P = Var(x)

� Matix with (co)variances between all info sources

� G = Cov(x,a)
� Matrix with covariances between info and breeding values in a

� v = vector of economic values

� Response to selection
� In underlying trait values: ∆a = b’G i/σI

� In breeding goal: ∆H = b’Gv i/σ
� Accuracy

� rIH = b’Gv / (σIσH)



Application of selection index theory 
to socially affected traits

� Aims
� Express response to selection within a 

framework common for animal breeders

� Structure the calculations of ∆G
� Find optimum degree of group selection



� “Traits” of interest
� Direct effect, AD

� Social effect, AS

� Breeding goal
� H = v1AD + v2AS = AD + (n−1)AS

� H = v’a
� v’ = [1 (n−1) ]
� a’ = [AD As]

� Index
� Direct effect is expressed in Pi

� Social effect is expressed in sum(Pj)

� Ii = b1Pi + b2sum(Pj)
� I = b’x
� b’ = [b1 b2]

� x’ = [Pi sum(Pj)]

Application of selection index theory 
to socially affected traits



� The relationship between the index and group selection
� Ii = b1Pi + b2sum(Pj)

� This is proportional to I = Pi + (b2/b1) sum(Pj)

� Hence, b2/b1 represents g, the degree of between group 
selection

� Solving the index weights yields the optimum degree of between 
group selection, gopt

� Hence, we can use selection index theory to optimize group vs. 
individual selection

Application of selection index theory 
to socially affected traits



Application of selection index theory 
to socially affected traits

� Solving the index weights: b = P-1Gv
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Application of selection index theory 
to socially affected traits

� Solving the index weights: b = P-1Gv
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Application of selection index theory 
to socially affected traits

� When the genetic parameters are known, the index always 
outperforms individual and group selection

� The optimum b may correspond to a g outside the range 0…1

� E.g. when rA is strongly negative, b1 tends to be negative

� Hence, optimum selection is not an intermediate of individual and 
group selection

� When rA,DS < 0, group selection (g=1) is rather robust

� Group selection acts directly on the TBV

� Useful when genetic parameters are unsure

� Individual selection is not at all robust against rA,DS < 0



Response to selection

Sib and progeny testing schemes



Does classical sib or progeny testing work 
for socially affected traits?

� Classical sib and progeny testing dont work for socially affected traits
� You may get negative response

Sib Info

Groups with unrelated individuals

Candidate

What is in the full sib info?

Psib = AD,sib + unrelated components

→ Psibs = ½AD,sire + ½ AD,dam

The sibs provide no info
on the social breeding value

of the candidate!



Sib and progeny testing using family groups

� Sib selection with family groups is effective and robust

Groups with full sibs

Candidates

What is in the full sib info?

Psib = AD,sib + (n-1)AS,sib

→ Psibs = ½TBVsire + ½TBVdam

Using sibs in family groups

provides info on the TBV
of the selection candidate



Accuracy of sib selection schemes

� Classical situation:

� r = relatedness between candidate and relatives

� N = number of relatives
� t = intraclass correlation among the relatives

� Correlation between the phenotypes of the relatives

� t = rwh2 , rw is relatedness among the relatives

� Full sib info: r = ½, tFS = ½h2

� Half sib info: r = ¼, tHS = ¼h2

� Progeny info: r = ½, tHS = ¼h2

Ntt
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� Assymptotic values for (N → ∞): 
� FS: √0.5 = ~0.71
� HS: 0.5
� Progeny: 1

Accuracy of sib selection schemes

accuracy with info of relatives
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� When using groups composed of relatives, accuracy is an analogy 
of the classical situation

� η2 is an analogy of h2: 

� τ is an analogy of t:

� N is the number of relatives
� N = number of groups times group size

N

r
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/)1( ττ
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=

Accuracy of sib selection schemes 
with social effects (Ellen et al., 2008)
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Var(PS)

Sib schemes vs group or individual selection

Individual selection (r = 0)

Individual selection (r = 0.5)

Half sibs

Full sibs
Progeny

Group selection (r = 0.5)

Sib schemes are robust against 
social effects

Results will depend on the genetic 
parameters → check for your own  
situation !



Sib schemes vs group or individual selection

Individual selection (r = 0)

Individual selection (r = 0.5)

Half sibs

Progeny and Full sibs
Group selection (r = 0.5)

Sib and group selection 
schemes are robust against 
competition (rA < 0)



Impact of number of groups on rIH

Progeny

Full sibs

Half sibs

This is very similar to the 
effect of the number of sibs
with classical sib selection

High accuracies are feasible
which may not be feasible 
with group selection (m = 1)



� Conclusions
� Sib selection works with groups composed of relatives

� Negative response “cannot” occur

� Useful when
� The candidate must be kept individually
� Group size differs between nucleus and commercial environment
� The candidate does not express the trait (e.g. sex-limited traits)
� The breeding goal refers to a crossbred
� “heritability” is low
� Strong competition (rA << 0)
� Genetic parameters are unknown
� …….

� Limiting accuracies are the same as for classical sib selection
� FS: 0.71, HS: 0.5, Progeny: 1
� This ignores Bulmer effects

Accuracy of sib selection schemes 
with social effects (Ellen et al., 2008)



Application of sibs selection against mortality due 
to cannibalism

0

5

10

15

20

25

30

35

40

45

18 22 26 30 34 38 42 46 50 54 58 62 66 70 74

Age (weeks)

M
o
rt
a
lit
y
 (
%
)

Low

Control

High

Results of one generation of divergent sib selection 
against mortality due to cannibalism in laying hens



BLUP selection
� BLUP → EBVD , EBVS

� Optimum index: ETBV = EBVD + (n−1) EBVS

� You don’t have to worry about optimum weights
� Which breeding designs yield most accurate EBTV?

� Little research has been done
� Relatedness within groups increases accuracy of the ETBV substantially

� Benefits of BLUP
� Estimation of fixed effects
� Low heritabilities

� Accounting for genetic trend and selection

� Disadvantage: you need to know the genetic parameters
� Which cannot be estimated from sib group data

� “Nothing can beat BLUP” when the design is the same
� Group selection with FS beats “BLUP with unrelated group members”



Optimum breeding schemes for BLUP

� Optimization requires prediction of ∆G
� Selection index theory (pseudo-BLUP)

� Wray and Hill, 1989; Villanueva et al., 1993

� This is really tedious, P = 24x24

� Stochastic simulation
� Use a sib-index as approximation

� The main result will be that higher relatedness within 
groups yields higher accuracy
� But I have not tried it



Design problem

� Max(∆G) → full sib groups
� Random groups give poor ∆G, even with BLUP

� Estimate VC → avoid full sib groups
� Random groups are fine

� Problem: how to combine VCE and ∆G?

� Are there intermediate solutions?
� Maybe: always combine only two families in a group

� With multiple combinations between families

� More research is needed



Variation in group size (n)

Genotype by environment (n) interaction



Variation in group size

� The TBV depends on n:
� → the value of an animal depends on n

� → genotype x group-size interaction
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Genotype by group size interaction

Impact is largest when either n1 or n2 is small

Inputs

Var(AD) = 1
Var(AS) = 0.2

rA,DS = 0

genotype by group size interaction
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Genotype by group size interaction

Inputs
Var(AD) = 1

Var(AS) = 0.2

rA,DS = 0 rA,DS = -0.6

The impact is bigger when direct and social effects
are negatively correlated

genotype by group size interaction
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Genotype by group size interaction

Inputs
Var(AD) = 1

rA,DS = -0.6

Var(AS) = 0.2 Var(AS) = 0.05

The GxE also depends on the size of social effects

genotype by group size interaction
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� The above assumes that Var(AS) is constant
� In larger groups, social effects per individual may be smaller 

� “Dilution” of the effect over n−1 group members

� Full dilution →

Genotype by group size interaction
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With full dilution, the TBV is the same for any n, → there is no GxE-interaction

This will differ between e.g.
Food Sharing   vs Infectious Disease



Conclusions GxE

� Because the TBV depends on n
� Variation in n may cause GxE interaction

� This depends critically on the relationship of Var(AS) with n

� Problem: Prediction requires VCE in data with varying n

� Large data sets required

� You may not have data for certain n values

� Once you have the genetic parameters use can use selection index
theory or BLUP


