Maternal Genetic Effects

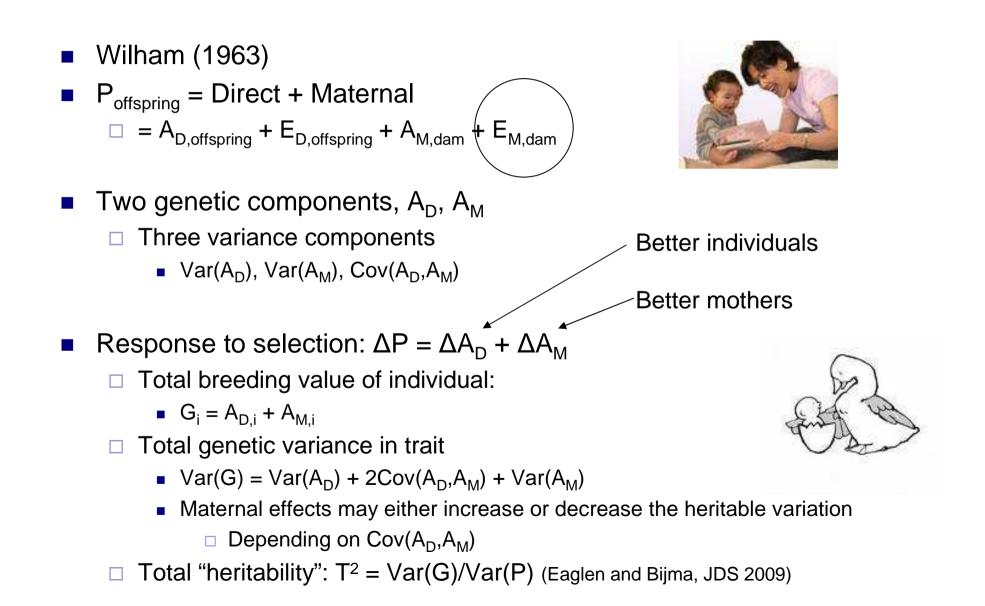
A special case of heritable social effects

Maternal effects

Juvenile traits in mammals depend on "environment provided by the mother"
 ☐ Juvenile growth rate in pigs → milk yield of dam
 ☐ Calving ease in cattle → rump angle and width of dam
 ☐ Juvenile mortality in pigs → maternal behavior

■ Maternal effects are a "social environment"
 □ Partially heritable → breeding interest

Components of maternally affected traits



Maternal effects and heritability

"total heritability"

□ Willham, 1972; Meyer, 1992; Luo et al., 2002

$$h_{r}^{2} = \frac{\sigma_{A_{D}}^{2} + 1\frac{1}{2}\sigma_{A_{DM}} + \frac{1}{2}\sigma_{A_{M}}^{2}}{\sigma_{P}^{2}}$$

This is the realized heritability of <u>mass selection</u>
 h_r² is the regression coefficient of A_D + A_S on P
 ∆G_{mass} = h_r²S

 T² expresses the heritable variance that can be used for response, irrespective of the selection method

$$R = i r_{IH} \sigma_{TBV} \qquad T^2 = \frac{\sigma_{TBV}^2}{\sigma_P^2}$$

2

Maternal effects and accuracy

 $R = i r_{IH} \sigma_{TBV}$

•
$$r_{IH} = corr(selcrit, A_D + A_M)$$

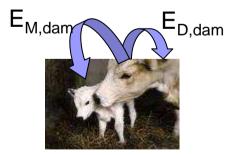
This applies to any selection method

For mass selection

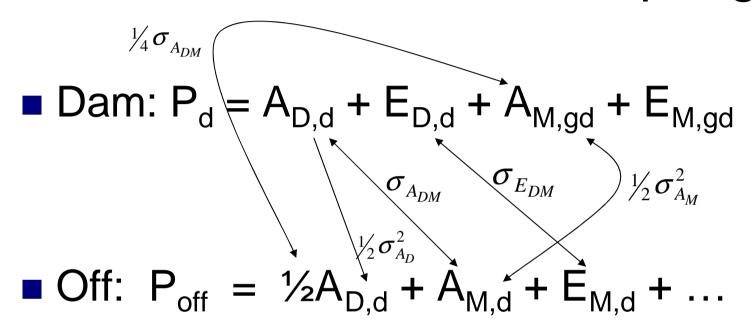
$$r_{IH} = \frac{\sigma_{A_D}^2 + 1\frac{1}{2}\sigma_{A_{DM}} + \frac{1}{2}\sigma_{A_M}^2}{\sigma_P \sigma_{TBV}} \neq \sqrt{h_r^2}$$

Estimating variance components

- Parameters of interest
 - \Box Var(A_D), Var(A_M), Cov(A_D,A_M)
 - Estimated $Cov(A_D, A_M)$ often strongly negative \rightarrow statistical artifact?
 - Koerhuis and Thompson (1997)
- Where does the info come from?
 - \Box Var(A_M): Individuals with the same dam are similar
 - Problem: Full sibs also have ½A_D in common
 - \Box Confounding of Var(A_D) with Var(A_M)
 - Problem: Full sibs also have E_M in common (c²)
 - \Box Confounding of Var(A_M) with Var(E_M)
 - \Box Cov(A_D,A_M): Similarity between dam and offspring
 - Problem: dam and offspring also have Cov(E_D, E_M)
 - Two distinct traits of the same individual (the dam)
- Beware of confounding
 - $\hfill\square$ Not accounting for non-genetic covariances \rightarrow biased genetic parameter estimates
 - We need to identify all the covariances between relatives



Covariances dam and offspring



 $Cov(P_d, P_{off}) = \frac{1}{2}\sigma_{A_D}^2 + \frac{1}{4}\sigma_{A_{DM}} + \frac{1}{2}\sigma_{A_M}^2 + Cov(E_D, E_M)$

Relationship matrix in MME Residual covariance of of dam and offspring record

• FS1:
$$P_{off} = \frac{1}{2}A_{D,s} + \frac{1}{2}A_{D,d} + A_{M,d} + E_{M,d} + ...$$

• $\int \frac{1}{2}\sigma_{A_D}^2 \int \int \sigma_{A_{DM}} \int \sigma_{A_M}^2 \int \sigma_{E_M}^2 \int \sigma_{E_M}^2$
• FS2: $P_{off} = \frac{1}{2}A_{D,s} + \frac{1}{2}A_{D,d} + A_{M,d} + E_{M,d} + ...$

Covariances full sibs

$$Cov_{FS} = \frac{1}{2}\sigma_{A_D}^2 + \sigma_{A_{DM}} + \sigma_{A_M}^2 + \sigma_{E_M}^2$$

Relationship matrix "common environment"
c²

Covariances between relatives

Conclusions

- Maternal effect create additional genetic and non-genetic covariances among relatives
- □ In the MME
 - Genetic covariances \rightarrow A-matrix in MME
 - Non-genetic covariances
 - \square Dam-offspring \rightarrow variance structure of residuals
 - \Box Full-sibs \rightarrow C²

Resulting mixed models

- One offspring per dam (no full sibs)
 - $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{Z}_D\mathbf{a}_D + \mathbf{Z}_M\mathbf{a}_M + \mathbf{e}$
- Z_D is the usual incidence matrix

 □ a "1" for each animal, zero elsewhere → Z_D = I

 Z_M is the incidence matrix for the mother

 \square a "1" at the position of the mother $\rightarrow \mathbf{Z}_{M} = \mathbf{I}$

• $Cov(e_i,e_j) = Cov(E_D,E_M)$ when i and j are dam and off.

$$Var\begin{bmatrix}\mathbf{a}_{D}\\\mathbf{a}_{M}\end{bmatrix} = \begin{bmatrix}\mathbf{A}\sigma_{A_{D}}^{2} & \mathbf{A}\sigma_{A_{DS}}\\\mathbf{A}\sigma_{A_{DS}} & \mathbf{A}\sigma_{A_{S}}^{2}\end{bmatrix}$$

Fit a correlated residual between dam and offspring

 $Var(\mathbf{e}) = \mathbf{R}\sigma_e^2$ $\mathbf{R}_{ii} = 1$ $\mathbf{R}_{ij} = \rho \text{ when } i \text{ and } j \text{ dam and offspring}$ $\rho = Cov(E_D, E_M) / \sigma_e^2$ $\mathbf{R}_{ij} = 0 \text{ elsewhere}$ Bijma, JAS, 2006

Resulting mixed models

- One litter per dam (full sibs of a single litter)
 - $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{Z}_D\mathbf{a}_D + \mathbf{Z}_M\mathbf{a}_M + \mathbf{Z}_C\mathbf{e}_c + \mathbf{e}$
- Z_C has a "1" at the position of the litter, zero elsewhere
 Z_c = I_{n_litters}
- e_c contains E_{M,d}
- The residual of the dam, e_{dam} contains E_{D,d}
- $Cov(e_{c,off}, e_{dam}) = Cov(E_D, E_M)$

$$Var\begin{bmatrix} \mathbf{e}_c \\ \mathbf{e} \end{bmatrix} = \begin{bmatrix} \mathbf{I}\sigma_c^2 & \mathbf{B}\sigma_{E_{DM}} \\ \mathbf{B}\sigma_{E_{DM}} & \mathbf{I}\sigma_e^2 \end{bmatrix}$$

B connects birth litters of individuals to the records of their dams

Need to fit a correlation between the common environment of the offspring and the residual of the dam Problem: no software (R?)

Common environment among full sibs

Omitting residual variance structures

Estimated genetic correlation when fitting independent residuals

	True r _g = 0	True r _g = C.3
$r_{\rm E} = 0$	0	C.3
$r_{\rm E} = 0.3$	0.3	C.6

Severe bias may occur

Other factors that may solve extreme estimated r_a

- Fixed effects in the model
- (random) sire by herd effect (cattle)
 - Koerhuise and Thompson (1997)

What data is needed?

- Relationships via the sire
 - \Box Avoid confounding $A_{D,d}$ with $E_{D,d}$
- Direct effect is expressed in offspring

 $\Box \quad 1: \operatorname{Cov}_{S} = \frac{1}{4}\operatorname{Var}(A_{D})$

Maternal effect is expressed in grand-offspring via daughter

□ 2: $Cov_{s} = (1/16) Var(A_{D}) + \frac{1}{4}Var(A_{M}) + (1/8)Cov(A_{D},A_{M})$

 Covariance is observed in covariance between offspring and grandoffspring

□ 3: $Cov_{S} = (1/8)Var(A_{D}) + \frac{1}{4}Cov(A_{D}, A_{M})$

- 3 equations with 3 unknowns \rightarrow can be solved
 - \hfill When full sibs or dam-offspring pairs occur in the data \rightarrow account for non-genetic covariances in the model
 - Or remove those data if possible
 - □ AI: Use sire-mgs-mmgs models to avoid covs from the dam side
- We need sires that have both offspring and maternal grand-offspring

What data is needed

Calving ease in dairy cattle

Table 3. Descriptive statistics of the data							
Variable	Full	Subset 11	Subset 2^2				
# of records	677,795	98,162	99,328				
# of sres	4,635	4,586	2,683				
# of herds	19,985	11,363	4,055				
# of dams	677,795	98,162	99,3 28				
# of dams with own birth record	101,445	49,081	C				
# maternal grandsires	18,467	6,177	17,963				

Calving ease in dairy cattle

Table 6. Estimated genetic parameters ¹							
Model/data set	h_D^{2s}	h_M^2 o	r _{G_{DM}}	$ ho^{\gamma}$	T^{28}		
Arimal model							
Subset 1a	0.077+0.007	0.028+0.006	-0.11+0.09	-	0.09 <i>5</i> +0.007		
Subset 1b	0.076±0.008	0.027±0.006	-0.13±0.11	0.003±0.008	0.091±0.012		
Subset 2	0.088±0.007	0.042±0.010	-0.10±0.14	-	0.116±0.013		
Subset 3	0.087±0.007	0.055±0.011	-0.16±0.12	-	0.120±0.014		
Subset 4	0.090±0.007	0.061±0.011	-0.44±0.09	-	0.08 <i>5</i> ±0.012		
Subset 5	0.091±0.007	0.02 <i>5</i> ±0.007	-0.04±0.14	-	0.112±0.012		
Average S2-S5	0.088±0.004	0.040±0.005	-0.24±0.06	-	0.107±0.006		

Even with 100,000 records, $r_{A,\text{DM}}$ is not very accurate

Conclusions maternal effects

 Maternal effects are just a special kind of social interactions

□ Fits within the same theoretical framework

- Data analysis is challenging
- Derive the expected covariances among relatives to:
 Identify possible confounding of genetic and environmental covariances (BIAS)
 - □ Identify powerful schemes for estimation