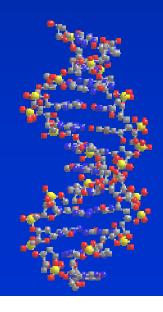


Linkage Disequilbrium to Genomic Selection



Course overview

- Day 1
 - Linkage disequilibrium in animal and plant genomes
- Day 2
 - QTL mapping with LD
- Day 3
 - Marker assisted selection using LD
- Day 4
 - Genomic selection
- Day 5
 - Genomic selection continued

Mapping QTL using LD

- Association testing with single marker regression
- Accounting for population structure
- LD mapping with haplotypes
- The Identical by descent (IBD) approach
- Combined linkage-linkage disequilibrium mapping

• LD mapping of QTL exploits population level associations between markers and QTL.

- LD mapping of QTL exploits population level associations between markers and QTL.
 - Associations arise because there are small segments of chromosome in the current population which are descended from the same common ancestor

- LD mapping of QTL exploits population level associations between markers and QTL.
 - Associations arise because there are small segments of chromosome in the current population which are descended from the same common ancestor
 - These chromosome segments, which trace back to the same common ancestor without intervening recombination, will carry identical marker alleles or marker haplotypes

- LD mapping of QTL exploits population level associations between markers and QTL.
 - Associations arise because there are small segments of chromosome in the current population which are descended from the same common ancestor
 - These chromosome segments, which trace back to the same common ancestor without intervening recombination, will carry identical marker alleles or marker haplotypes
 - If there is a QTL somewhere within the chromosome segment, they will also carry identical QTL alleles

- LD mapping of QTL exploits population level associations between markers and QTL.
 - Associations arise because there are small segments of chromosome in the current population which are descended from the same common ancestor
 - These chromosome segments, which trace back to the same common ancestor without intervening recombination, will carry identical marker alleles or marker haplotypes
 - If there is a QTL somewhere within the chromosome segment, they will also carry identical QTL alleles
- The simplest way to exploit these associations is by single SNP regression

Association between a marker and a trait can be tested with the model

$$y = 1_n \mu + Xg + e$$

- Where
 - y is a vector of phenotypes
 - **1n** is a vector of 1s allocating the mean to phenotype,
 - X is a design matrix allocating records to the marker effect,
 - *g* is the effect of the marker
 - **e** is a vector of random deviates $\sim N(0,\sigma_e^2)$
- Underlying assumption here is that the marker will only affect the trait if it is in linkage disequilibrium with an unobserved QTL.

A small example

Animal	Phenotpe	SNP allele 1	SNP allele
1	2.030502	1	1
2	3.542274	1	2
3	3.834241	1	2
4	4.871137	2	2
5	3.407128	1	2
6	2.335734	1	1
7	2.646192	1	1
8	3.762855	1	2
9	3.689349	1	2
10	3.685757	1	2

• The design vector $\mathbf{1}_n$ allocates phenotypes to the mean

Animal	Phenotpe	SNP allele 1	SNP allele
1	2.030502	1	1
2	3.542274	1	2
3	3.834241	1	2
4	4.871137	2	2
5	3.407128	1	2
6	2.335734	1	1
7	2.646192	1	1
8	3.762855	1	2
9	3.689349	1	2
10	3.685757	1	2

Animal	$/1_n$
1	1
2	1
3	1
4	1
5	1
6	1
7	1
8	1
9	1
10	1
	\ /

- The design vector $\mathbf{1}_n$ allocates phenotypes to the mean
- The design vector **X** allocates phenotypes to genotypes

Animal	Phenotpe	SNP allele 1	SNP allele
1	2.030502	1	1
2	3.542274	1	2
3	3.834241	1	2
4	4.871137	2	2
5	3.407128	1	2
6	2.335734	1	1
7	2.646192	1	1
8	3.762855	1	2
9	3.689349	1	2
10	3.685757	1	2

		X, Number of "2"
Animal	1 _n	alleles
1	1	0
2	1	1
3	1	1
4	1	2
5	1	1
6	1	0
7	1	0
8	1	1
9	1	1
10	1	1

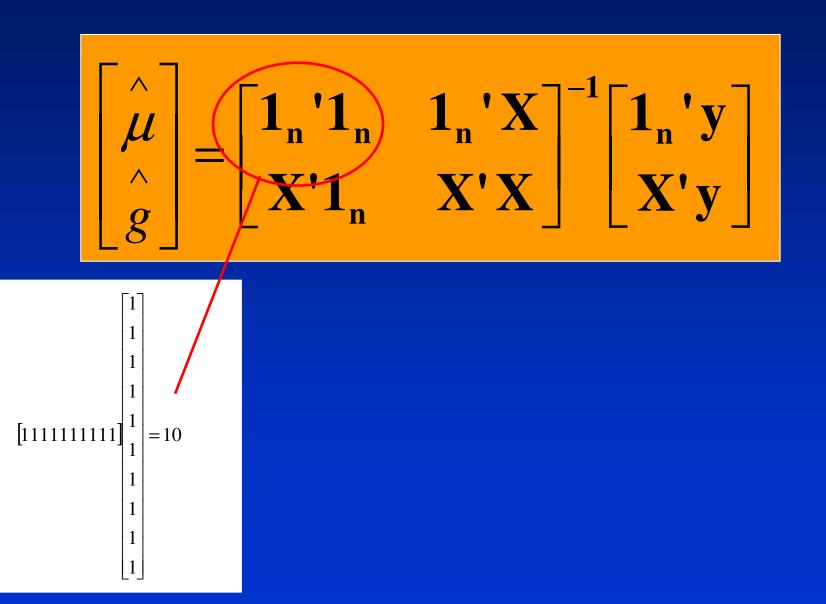
- The design vector $\mathbf{1}_n$ allocates phenotypes to the mean
- The design vector X allocates phenotypes to genotypes

Anim	al Phenotpe SNP a	illele 1 SNP allele
1	2.030502 1	1
2	3.542274 \1	2
3	3.834241	2
4	4.871137 2	2
5	3.407128 1	2
6	2.335734 1	1
7	2.646192 1	1
8	3.762855	2
9	3.689349 /1	2
10	3.685757 1	2
		y vector

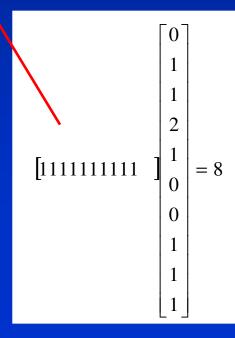
		X, Number of "2"
Animal	1 _n	alleles
1	1	0
2	1	1
3	1	1
4	1	2
5	1	1
6	1	0
7	1	0
8	1	1
9	1	1
10	1	1

Estimate the marker effect and the mean as:

$$\begin{bmatrix} \hat{\mu} \\ \hat{g} \end{bmatrix} = \begin{bmatrix} \mathbf{1_n'1_n} & \mathbf{1_n'X} \\ \mathbf{X'1_n} & \mathbf{X'X} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1_n'y} \\ \mathbf{X'y} \end{bmatrix}$$



$$\begin{bmatrix} \hat{\mu} \\ \hat{g} \end{bmatrix} = \begin{bmatrix} \mathbf{1_n'1_n} & \mathbf{1_n'X} \\ \mathbf{X'1_n} & \mathbf{X'X} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1_n'y} \\ \mathbf{X'y} \end{bmatrix}$$



$$\begin{bmatrix} \hat{\mu} \\ \hat{g} \end{bmatrix} = \begin{bmatrix} 10 & 8 \\ 8 & 10 \end{bmatrix}^{-1} \begin{bmatrix} 33.8 \\ 31.7 \end{bmatrix}$$

$$\begin{bmatrix} \hat{\mu} \\ \hat{g} \end{bmatrix} = \begin{bmatrix} 0.28 & -0.22 \\ -0.22 & 0.28 \end{bmatrix} \begin{bmatrix} 33.8 \\ 31.7 \end{bmatrix}$$

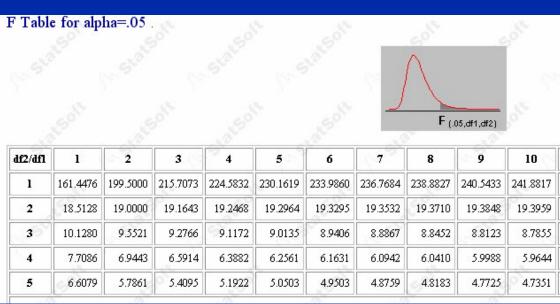
Estimates of the mean and marker effect are:

$$\begin{bmatrix} \hat{\mu} \\ \hat{g} \end{bmatrix} = \begin{bmatrix} 2.36 \\ 1.38 \end{bmatrix}$$

• In the "simulation", mean was 2, r² between QTL and marker was 1, and effect of 2 allele at QTL was 1.

- Is the marker effect significant?
- F statistic comparing between marker variance to within marker variance
- Test against tabulated value for $F_{\alpha,v1,v2}$
 - $-\alpha$ = significance value
 - -v1=1 (1 marker effect for regression)
 - -v2=9 (number of records -1)

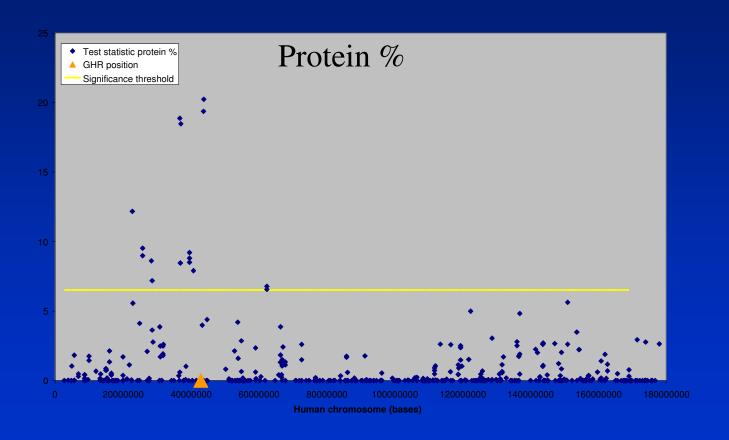
- In our simple example
 - $-F_{data}=4.56$
 - $-F_{0.05,1,9}=5.12$
- Not significant



Experiment

- > 384 Holstein-Friesian dairy bulls selected from Australian dairy bull population
- genotyped for 10 000 SNPs
- Single marker regression with protein%

Results of genome scans with dense SNP panels

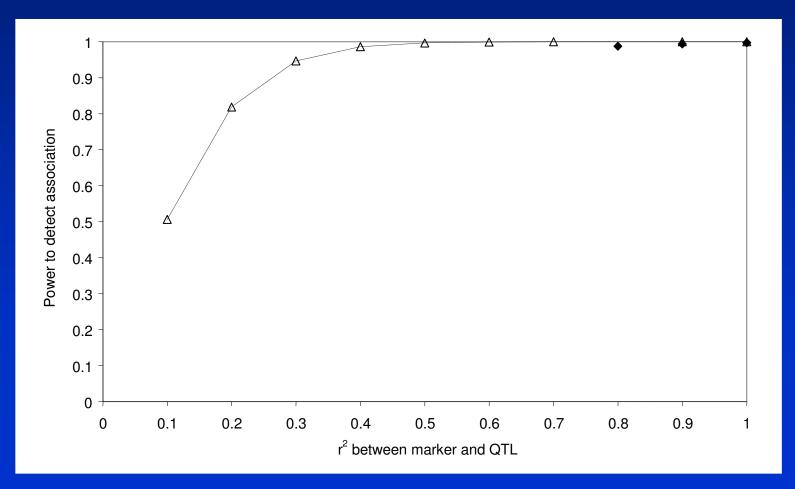


- What is the power of an association test with a certain number of records to detect a QTL?
- Power is probability of correctly rejecting null hypothesis when a QTL of really does exist in the population
- How many animals do we need to genotype and phenotype?

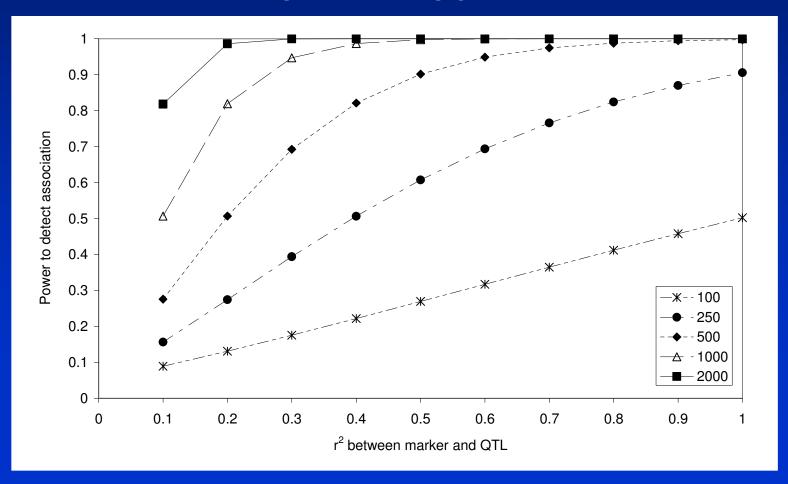
- Power is a function of:
 - r² between the marker and QTL
 - sample size must be increased by 1/r² to detect an un-genotyped QTL, compared with sample size for testing QTL itself
 - Proportion of total phenotypic variance explained by the QTL
 - Number of phenotypic records

- Power is a function of:
 - r² between the marker and QTL
 - sample size must be increased by 1/r² to detect an un-genotyped QTL, compared with sample size for testing QTL itself
 - Proportion of total phenotypic variance explained by the QTL
 - Number of phenotypic records
 - Allele frequency of the rare allele of SNP
 - determines the minimum number of records used to estimate an allele effect.
 - The power becomes particular sensitive with very low frequencies (eg. <0.1).
 - The significance level α set by the experimenter

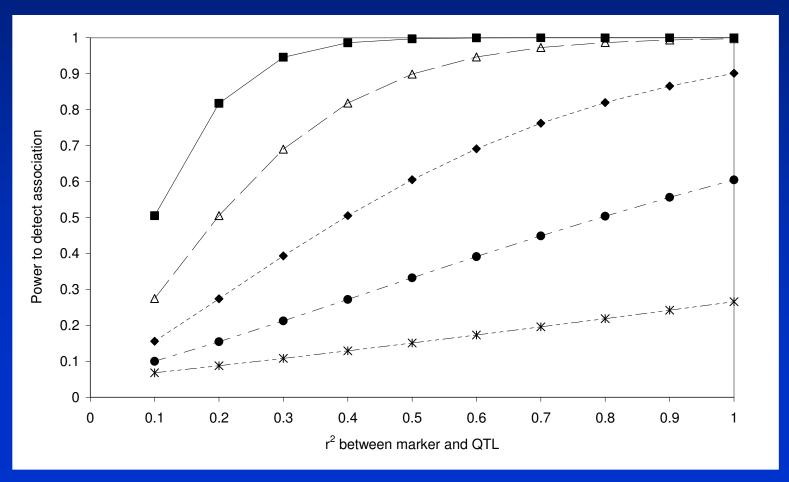
 Power to detect a QTL explaining 5% of the phenotypic variance, 1000 phenotypic records



 Power to detect a QTL explaining 5% of the phenotypic variance

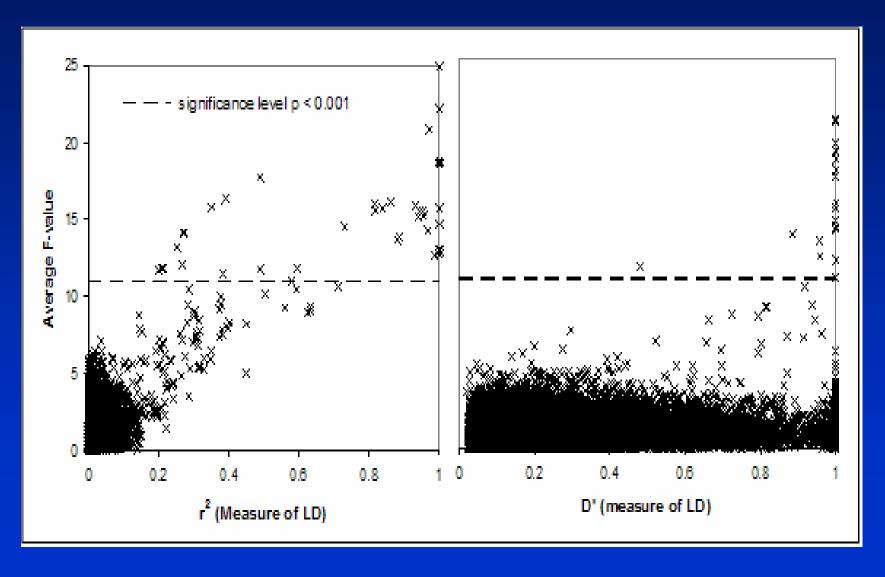


Power to detect a QTL explaining
 2.5% of the phenotypic variance



- r^2 of at least 0.2 is required to achieve power \geq 0.8 to detect a QTL of $h_{QTL}=0.05$ with 1000 phenotypic records.
- In dairy cattle, $r^2 \approx 0.2$ at 100kb.
- Assuming a genome length of 3000Mb in cattle, we would need at least 30 000 markers to ensure there is a marker 100kb from every QTL.
- Assumes markers are evenly spaced, all have rare allele frequency > 0.2.
- In practise, markers not be evenly spaced, rare allele frequency of some markers below 0.2.
- At least 60 000 markers required.

- Another illustration of effect of r² on power
- An experiment to assess power of whole genome association scans in outbred livestock with commercially available SNP panels
 - 384 Angus cattle genotyped for 10,000 SNPs
 - QTL, polygenic and environmental effects were simulated for each animal
 - QTL simulated on genotyped SNPs chosen at random.
 - There was a strong correlation between F-value of significant SNPs and their r² with the "QTL"



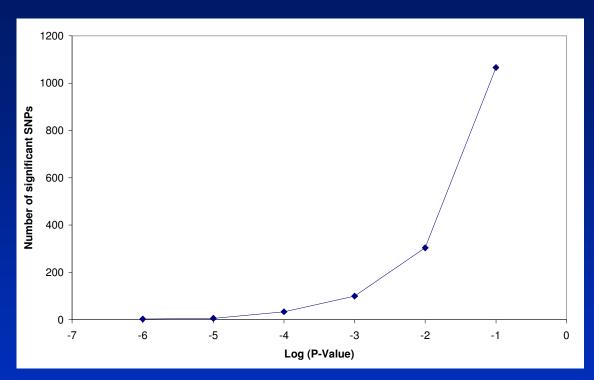
- What significance level to use?
 - P<0.01, P<0.001?
- We have a horrible multiple testing problem
 - Eg. If test 10 000 SNP at P<0.01 expect 100 significant results just by chance?
- Could just correct for the number of tests
 - But is too stringent, ignores the fact that tests are on the same chromosome (eg not independent)

- Could use a technique called permutation testing
 - Randomly shuffle phenotypes across genotypes
 - Test all SNPs (null hypothesis), get largest F value
 - Repeat 1000 times
 - 950th value is P<0.05 level corrected for multiple testing
- Difficult with pedigree structure

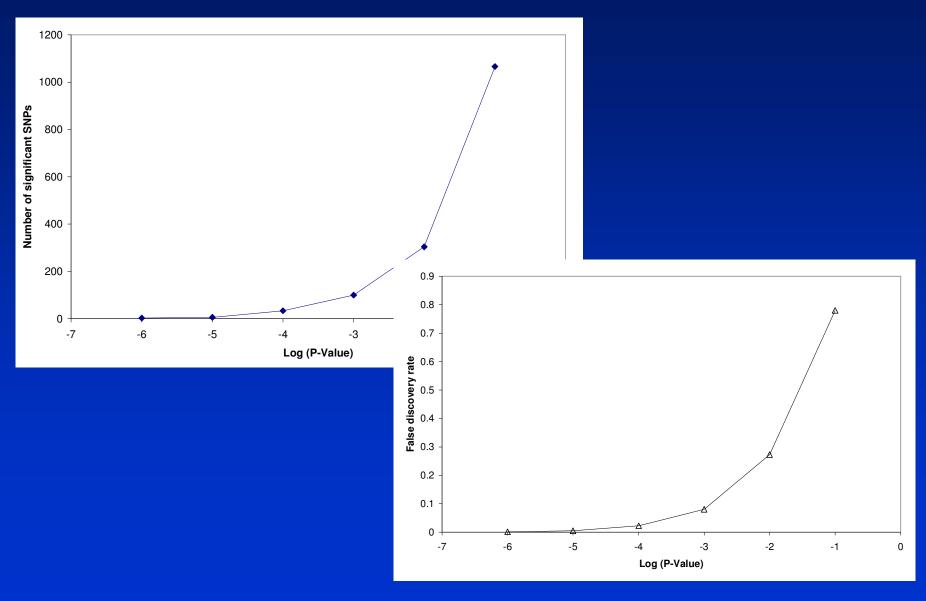
- An alternative is to choose a significance level with an acceptable false discovery rate (FDR)
- Proportion of significant results which are really false positives
- FDR = mP/n
 - m = number of markers tested
 - P = significance level (eg. P=0.01)
 - n = number of markers tested

- An alternative is to choose a significance level with an acceptable false discovery rate (FDR)
- Proportion of significant results which are really false positives
- FDR = mP/n
 - m = number of markers tested
 - P = significance level (eg. P=0.01)
 - n = number of markers tested
- Example
 - 10 000 markers tested at P<0.001, and 20 significant.
 What is FDR?
 - FDR=10000*0.001/20 = 50%
 - Eg. 50% of our significant results are actually false positives

Single marker regression

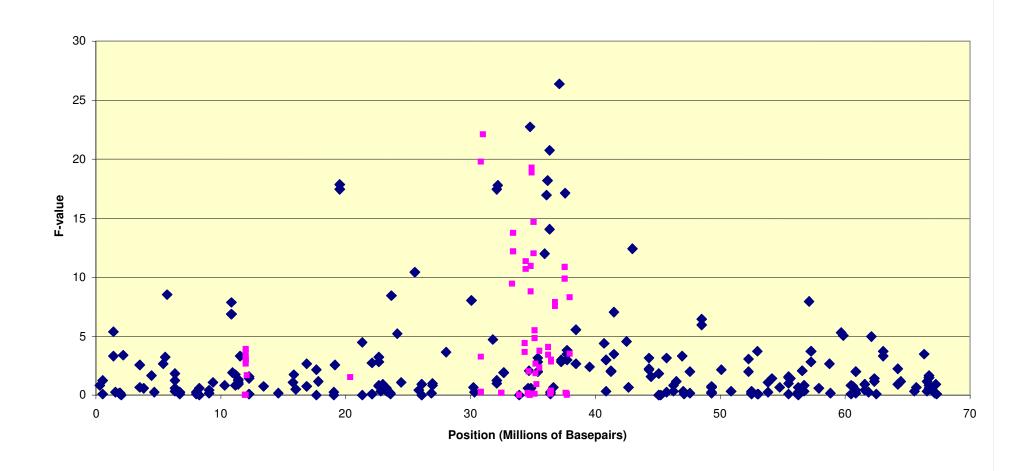


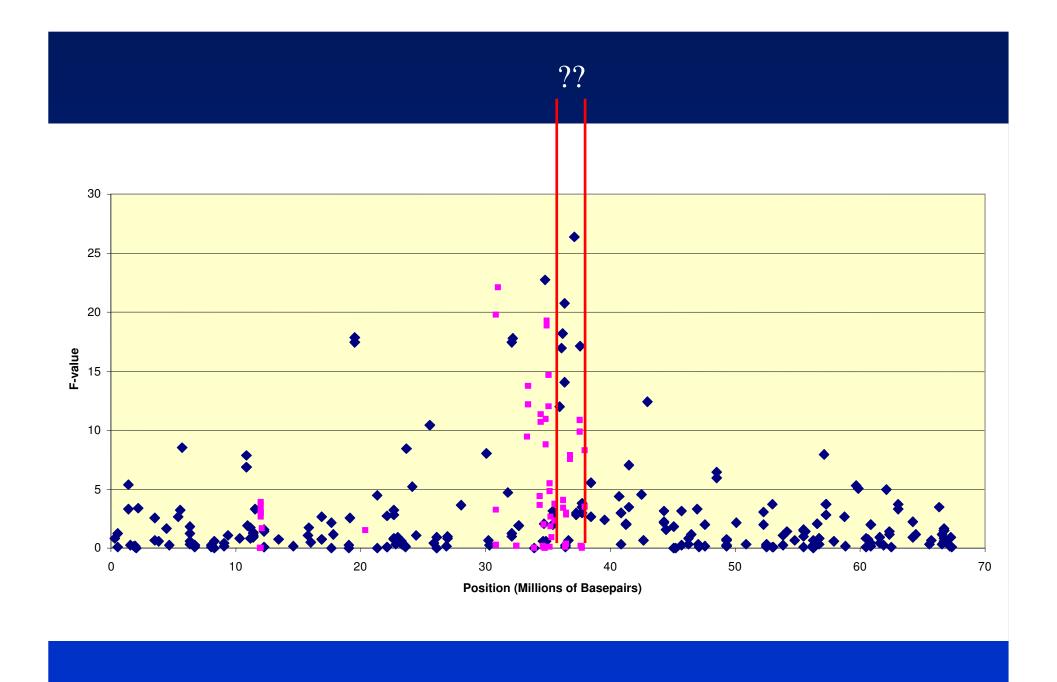
Single marker regression

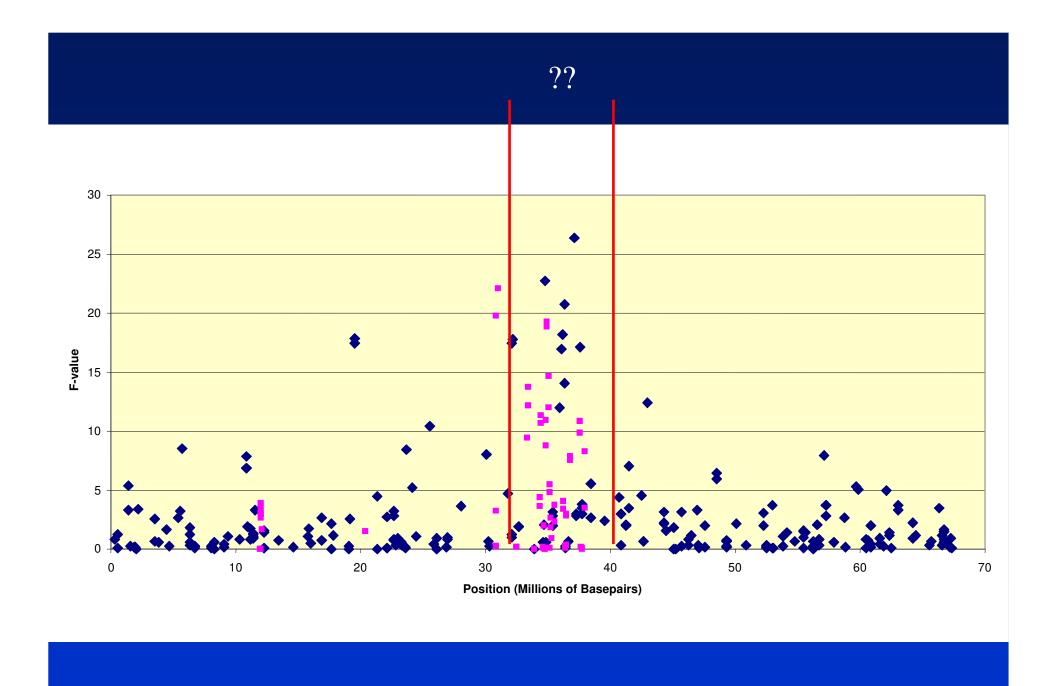


Single marker regression

- Confidence regions
 - Following a genome wide association study, how do we decide the 95% confidence interval for the true QTL location?
- How many candidate genes to investigate?







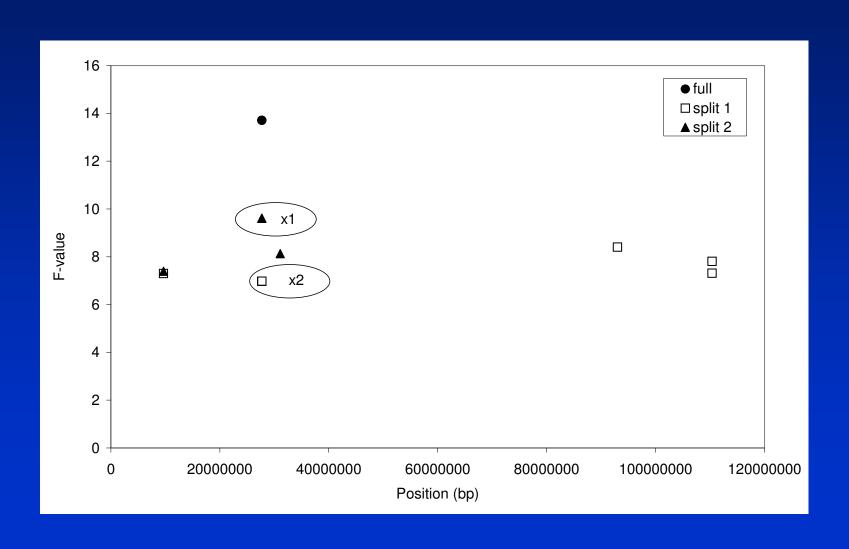
- One method to calculate confidence intervals
 - Count up number of "clusters"=n
 - Split data set into two at random (eg. half animals in one set, other half in other set)
 - Designate best SNP at a cluster location in data set 1 and data set 2 as x_{1i} , x_{2i} .
 - Estimate standard error of position over best SNP as:

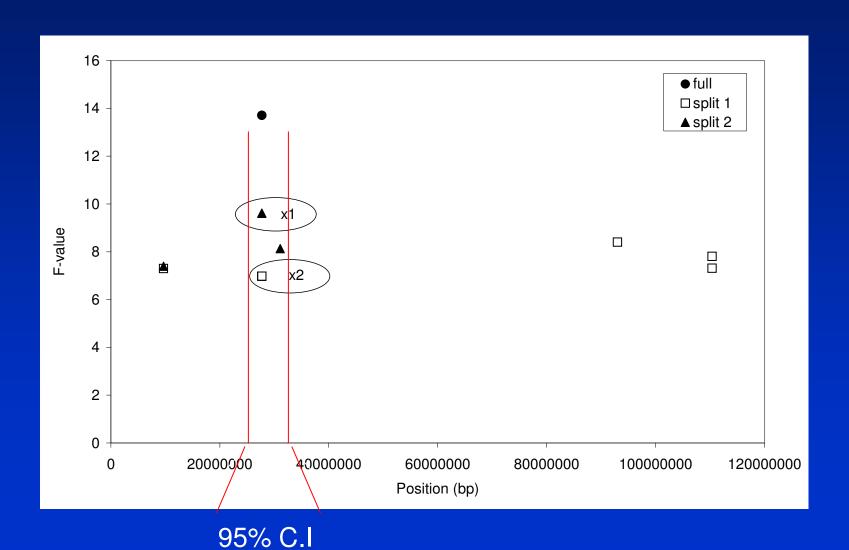
$$se(\bar{x}) = \sqrt{\frac{1}{4n} \sum_{i=1}^{n} (x_{1i} - x_{2i})^2}$$

- One method to calculate confidence intervals
 - Count up number of "clusters"=n
 - Split data set into two at random (eg. half animals in one set, other half in other set)
 - Designate best SNP at a cluster location in data set 1 and data set 2 as x_{1i} , x_{2i} .
 - Estimate standard error of position over best SNP as:

$$se(\bar{x}) = \sqrt{\frac{1}{4n} \sum_{i=1}^{n} (x_{1i} - x_{2i})^2}$$

95% C.I = position of best SNP ±1.96*se(x_bar)





Mapping QTL using LD

- Association testing with single marker regression
- Accounting for population structure
- LD mapping with haplotypes
- The identical by descent (IBD) approach
- Combined linkage-linkage disequilibrium mapping

- Simple model we have used assumes all animals are equally (un) related.
- Unlikely to be the case.
- Multiple offspring per sire, breeds or strains all create population structure.
- If we don't account for this, false positives!

- Simple example
 - a sire has many progeny in the population.
 - the sire has a high estimated breeding value
 - a rare allele at a random marker is homozygous in the sire (aa)
 - Then sub-population of his progeny have higher frequency of a than the rest of the population.
 - As the sires' estimated breeding value is high, his progeny will also have higher than average estimated breeding values.
 - If we don't account for relationship between progeny and sire the rare allele will appear to have a (perhaps significant) positive effect.

 Can account for these relationships by extending our model.....

$$y = 1_n' \mu + Xg + Zu + e$$

- Where
 - u is a vector of polygenic effect in the model with a covariance structure u~N(0,Aσ_a²)
 - A is the average relationship matrix built from the pedigree of the population
 - Z is a design matrix allocating animals to records.

• Can account for these relationships by extending our model.....

$$\mathbf{y} = \mathbf{1}_{\mathbf{n}}' \mu + \mathbf{X}g + \mathbf{Z}\mathbf{u} + \mathbf{e}$$

• Solutions ($\lambda = \sigma_e^2/\sigma_a^2$):

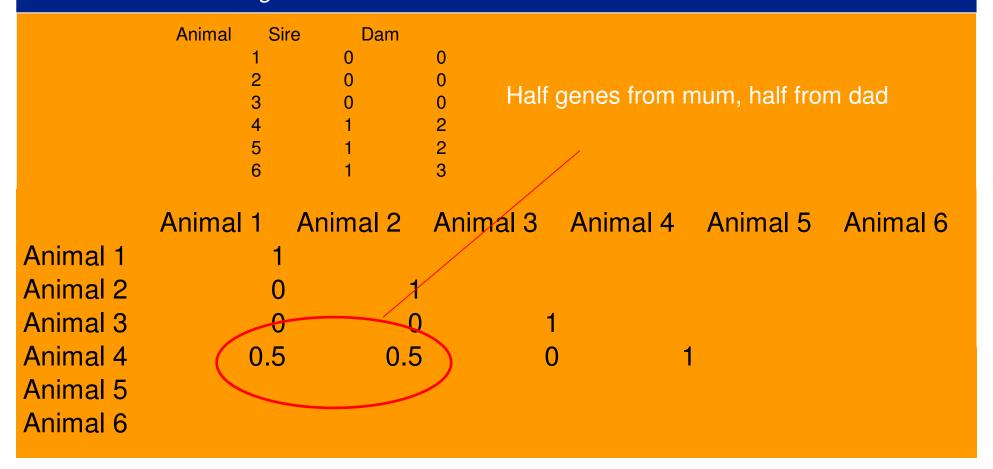
$$\begin{bmatrix} \hat{\mu} \\ \hat{g} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} \mathbf{1}_{n} \mathbf{'1}_{n} & \mathbf{1}_{n} \mathbf{'X} & \mathbf{1}_{n} \mathbf{'Z} \\ \mathbf{X'1}_{n} & \mathbf{X'X} & \mathbf{X'Z} \\ \mathbf{Z'1}_{n} & \mathbf{Z'X} & \mathbf{Z'Z} + \mathbf{A}^{-1}\lambda \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1}_{n} \mathbf{'y} \\ \mathbf{X'y} \\ \mathbf{Z'y} \end{bmatrix}$$

Animal	Sire	Dam	
	1	0	0
	2	0	0
	3	0	0
	4	1	2
	5	1	2
	6	1	3

	Animal 5 1 2 3 4 5 6	O Dam 0 0 0 1 1 1 1 1	0 0 0 2 2 2 3			
	Animal 1	Animal 2	Animal 3	Animal 4	Animal 5	Animal 6
Animal 1		1				
Animal 2						
Animal 3						
Animal 4						
Animal 5						
Animal 6						

		Animal 1 2 3 4 5 6	Sire () ()) () (2)) <u>?</u>			
		Animal 1	Anin	nal 2	Animal 3	Animal 4	Animal 5	Animal 6
A	nimal 1		1					
A	nimal 2		0	1				
A	nimal 3							
A	nimal 4							
A	nimal 5							
A	nimal 6							
A	nimal 6							

	Animal	Sir	e Dam				
		1	0	0			
		2	0	0			
		3	0	0			
		4	1	2			
		5	1	2			
		6	1	3			
	Animal	1	Animal 2	Animal 3	Animal 4	Animal 5	Animal 6
A ' 14	/ tillitial		/ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/ tillifial o	/ tillitial +	/ tillitial o	/ tillitial o
Animal 1		1					
Animal 2		0	1				
Animal 3		0	0	_	1		
			J				
Animal 4							
Animal 5							
Animal 6							



	Animal Si 1 2 3 4 5	re Dam 0 0 0 1	0 0 0 2 2			
	6	1	3			
	Animal 1	Animal 2	Animal 3	Animal 4	Animal 5 Anii	mal 6
Animal 1	1					
Animal 2	0	1				
Animal 3	0	0	1			
Animal 4	0.5	0.5	0	1		
Animal 5	0.5	0.5	0	0.5	1	
Animal 6						

	Animal Sir	e Dam				
	1	0	0			
	2	0	0 Anii	male 1 and F	are full sibs	
	3	0	O	nais 4 and 5	are ruil sibs	
	4	1	2	1		
	5 6	1	2			
	0		3			
	Animal 1	Animal 2	Animal 3	Animal 4	Animal 5	Animal 6
Animal 1	1					
Animal 2	0	1				
Animal 3	0	C)	1		
Animal 4	0.5	0.5		0	4	
Animal 5	0.5	0.5	5	0 (0	.5)	1
Animal 6						

	Animal Sir	e Dam			
	1	0	0		
	2	0	0 Anima	als 6 is a half s	sib of 4 and 5
	3	0	O	ais o is a fiall s	
	4	1	2		
	5	1	2		
	6	1	3		
	Animal 1	Animal 2	Animal 3	Animal 4	nimal 5 Animal 6
Animal 1	1				
Animal 2	0	1			
Animal 3	0	0	1		
Animal 4	0.5	0.5	0	1	
Animal 5	0.5	0.5	0	0.5	1
Animal 6	0.5	0	0.5	0.25	0.25

• Example

Animal	Sire	Dam	Ph	nenotype SNI	P allele SNI	عااماه
Aillillai	Onc	Dam		ichotype ora	i alicic Olvi	ancic
	1	0	0	10.1	1	2
	2	0	0	2.2	2	2
	3	0	0	2.31	2	2
	4	1	2	6.57	1	2
	5	1	2	6.06	1	2
	6	1	3	6.21	1	2

$$y = 1_n \mu + Xg + e$$

• Example

Animal	Sire	Dam	Pł	nenotype SN	P allele SN	P allele
	1	0	0	10.1	1	2
	2	0	0	2.2	2	2
	3	0	0	2.31	2	2
	4	1	2	6.57	1	2
	5	1	2	6.06	1	2
	6	1	3	6.21	1	2

$$y = 1_n \mu + Xg + e$$

X 2

Example

Animal	Sire	Dam	Ph	nenotype SNI	P allele SNI	عااماه
Aillillai	Onc	Dam		ichotype ora	i alicic Olvi	ancic
	1	0	0	10.1	1	2
	2	0	0	2.2	2	2
	3	0	0	2.31	2	2
	4	1	2	6.57	1	2
	5	1	2	6.06	1	2
	6	1	3	6.21	1	2

$$y = 1_n \mu + Xg + e$$

$$\begin{bmatrix} \hat{\mu} \\ \hat{g} \end{bmatrix} = \begin{bmatrix} \mathbf{1_n'1_n} & \mathbf{1_n'X} \\ \mathbf{X'1_n} & \mathbf{X'X} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1_n'y} \\ \mathbf{X'y} \end{bmatrix}$$

• Example

Animal	Sire	Dam	Pł	nenotype SN	P allele SNI	P allele
	1	0	0	10.1	1	2
	2	0	0	2.2	2	2
	3	0	0	2.31	2	2
	4	1	2	6.57	1	2
	5	1	2	6.06	1	2
	6	1	3	6.21	1	2

$$y = 1_n \mu + Xg + e$$

$$\begin{bmatrix} \hat{\mu} \\ \hat{g} \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 8 & 12 \end{bmatrix}^{-1} \begin{bmatrix} 33.5 \\ 38 \end{bmatrix}$$

Example

Animal	Sire	Dam		Phenotype SNI	P allele SNF	allele
	1	0	0	10.1	1	2
	2	0	0	2.2	2	2
	3	0	0	2.31	2	2
	4	1	2	6.57	1	2
	5	1	2	6.06	1	2
	6	1	3	6.21	1	2

$$\begin{bmatrix} \hat{\mu} \\ \hat{g} \end{bmatrix} = \begin{bmatrix} 12.2 \\ -5 \end{bmatrix}$$

• Example

Animal	Sire	Dam	Phe	enotype SN	IP allele SNP	allele
	1	0	0	10.1	1	2
	2	0	0	2.2	2	2
	3	0	0	2.31	2	2
	4	1	2	6.57	1	2
	5	1	2	6.06	1	2
	6	1	3	6.21	1	2

$$y = 1_n' \mu + Xg + Zu + e$$

Example

Animal	Sire	Dam	Pł	nenotype SN	P allele SN	P allele
	1	0	0	10.1	1	2
	2	0	0	2.2	2	2
	3	0	0	2.31	2	2
	4	1	2	6.57	1	2
	5	1	2	6.06	1	2
	6	1	3	6.21	1	2

$$y = 1_n' \mu + Xg + Zu + e$$

$$\begin{bmatrix} \hat{\mu} \\ \hat{g} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} \mathbf{1_n'1_n} & \mathbf{1_n'X} & \mathbf{1_n'Z} \\ \mathbf{X'1_n} & \mathbf{X'X} & \mathbf{X'Z} \\ \mathbf{Z'1_n} & \mathbf{Z'X} & \mathbf{Z'Z} + \mathbf{A}^{-1}\lambda \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1_n'y} \\ \mathbf{X'y} \\ \mathbf{Z'y} \end{bmatrix}$$

• Example

Animal	Sire	Dam		Phenotype	SNP allele	SNP allele
	1	0	0	6.51	1	1
	2	0	0	2.2	2	2
	3	0	0	2.31	2	2
	4	1	2	4.72	1	2
	5	1	2	5.02	1	2
	6	3	2	2.93	2	2

$$y = 1_n' \mu + Xg + Zu + e$$

$$\lambda = 0.33$$

• Example

Animal	Sire	Dam	Pl	nenotype SN	P allele SNF	^o allele
	1	0	0	6.51	1	1
	2	0	0	2.2	2	2
	3	0	0	2.31	2	2
	4	1	2	4.72	1	2
	5	1	2	5.02	1	2
	6	3	2	2.93	2	2

Γ^.	7	6	;	8	1	1	1	1	1	1	_1	33.45
μ		8	}	12	1	2	2	1	1	1	1	37.96
^		1		1	1.916575	0.416625	0.16665	-0.3333	-0.49995	-0.3333		10.1
g	=	1		2	0.416625	1.749925	0	-0.3333	-0.49995	0		2.2
		1		2	0.16665	0	1.49995	0	0	-0.3333		2.31
\mathbf{u}		1		1	-0.49995	-0.49995	0	1.6666	0.3333	0		6.57
u		1		1	-0.3333	-0.3333	0	0	1.6666	0		6.06
<u> </u>	_	1		1	-0.3333	0	-0.3333	0	0	1.6666		6.21

Example

Animal	Sire	Dam	Ph	enotype SN	P allele SNI	P allele
	1	0	0	10.1	1	2
	2	0	0	2.2	2	2
	3	0	0	2.31	2	2
	4	1	2	6.57	1	2
	5	1	2	6.06	1	2
	6	1	3	6.21	1	2

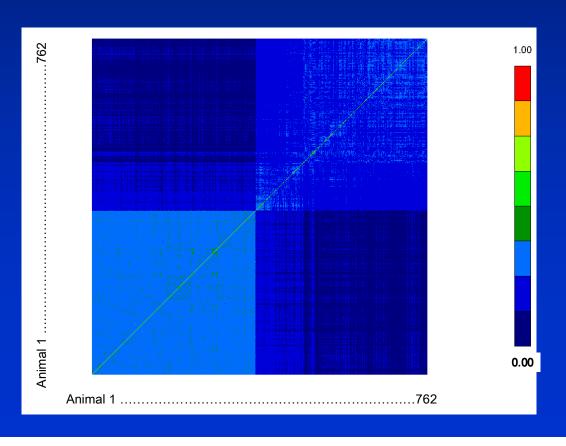
$$\begin{bmatrix} \hat{\mu} \\ \hat{g} \\ \hat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} 10.3 \\ -3.5 \\ 1.9 \\ -1.1 \\ -0.9 \\ 0.2 \\ -0.3 \\ -0.1 \end{bmatrix}$$

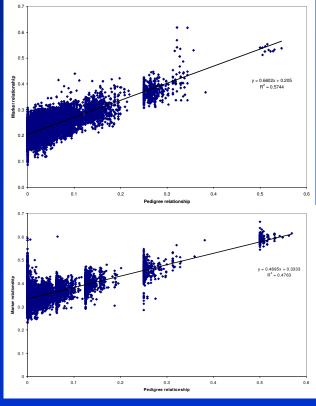
- Example of importance of accounting for population structure......
 - 365 Angus cattle genotyped for 10,000 SNPs
 - polygenic and environmental effects were simulated for each animal
 - No QTL fitted!
 - Effect of each SNP tested using three models
 - SNP only
 - SNP and sire
 - SNP and full pedigree

Number of false positives......

Analysis model	Significance level					
	p<0.005	p<0.001	p<0.0005			
Expected type I errors	40	8	4			
1. Full pedigree model	39 (SD=14)	9 (SD=5)	4 (SD=3)			
2. Sire pedigree model	46* (SD=21)	11* (SD=7)	6* (SD=5.5)			
3. No pedigree model	68** (SD=31)	18**(SD=11)	10** (SD=7)			
4. Selected 27% - full pedigree	54** (SD=18)	12** (SD=6)	7** (SD=4)			

- Problem when we do not have history of the population
- Solution use the average relationship across all markers as the A matrix





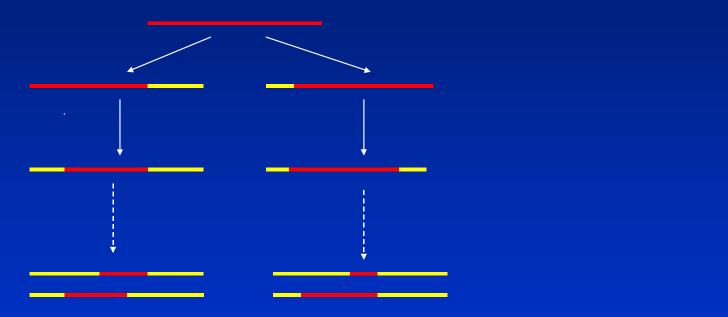
Mapping QTL using LD

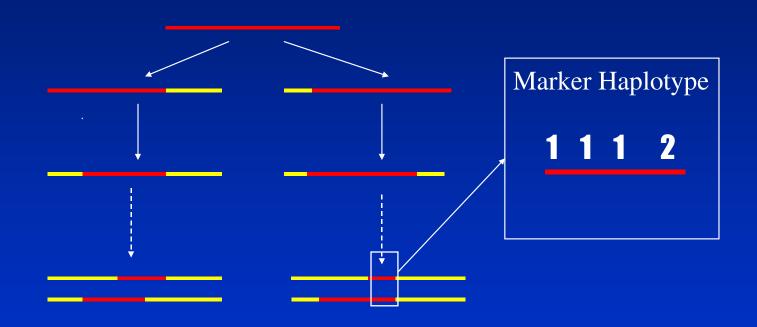
- Association testing with single marker regression
- Accounting for population structure
- LD mapping with haplotypes
- The identical by descent (IBD) approach
- Combined linkage-linkage disequilibrium mapping

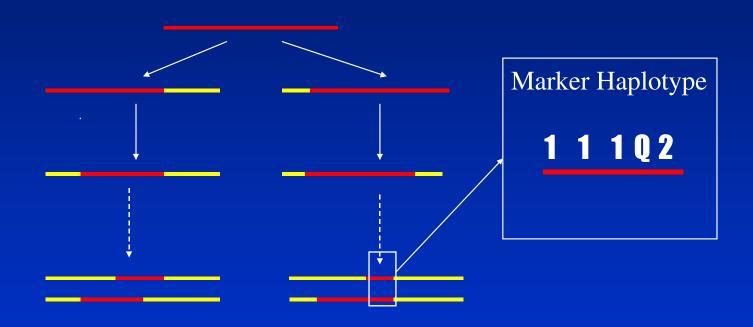
- Power of association study depends on LD between markers and QTL
- One way to increase LD between QTL alleles and markers is to use haplotypes of markers rather than a single marker
- 1_Q single marker (1 is the allele of the marker)
- 1_1_Q_2_1 Haplotype of markers

- Value of haplotypes depends on LD between haplotype and QTL
 - If we find two identical haplotypes from the population, what is the probability they carry the same QTL allele?
 - If probability is high, high level of LD between haplotype and QTL

- If we find two identical haplotypes from the population, what is the probability they carry the same QTL allele?
- Haplotypes identical either because chromosome segments from same common ancestor







- If we find two identical haplotypes from the population, what is the probability they carry the same QTL allele?
- Haplotypes identical either because chromosome segments from same common ancestor
- Or because of chance recombination......

1 1 1 1 2 2 2 2 Sire

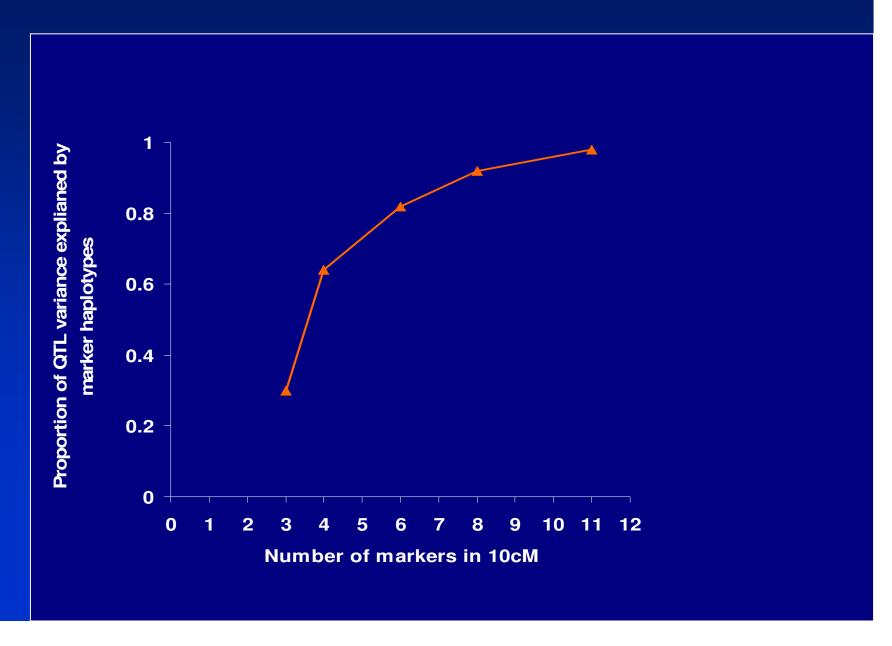
1 1 1 1 2 2 2 2 2 2

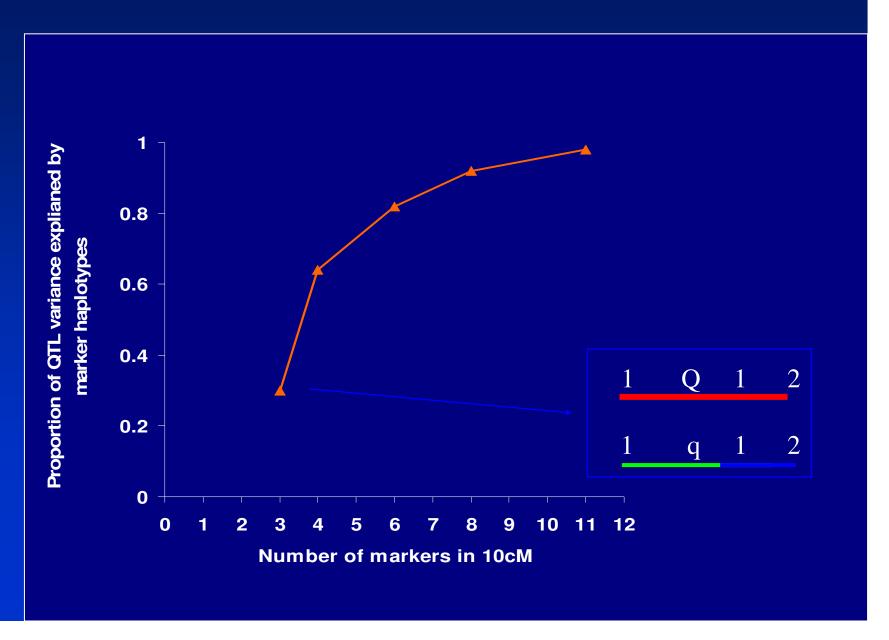
Sire

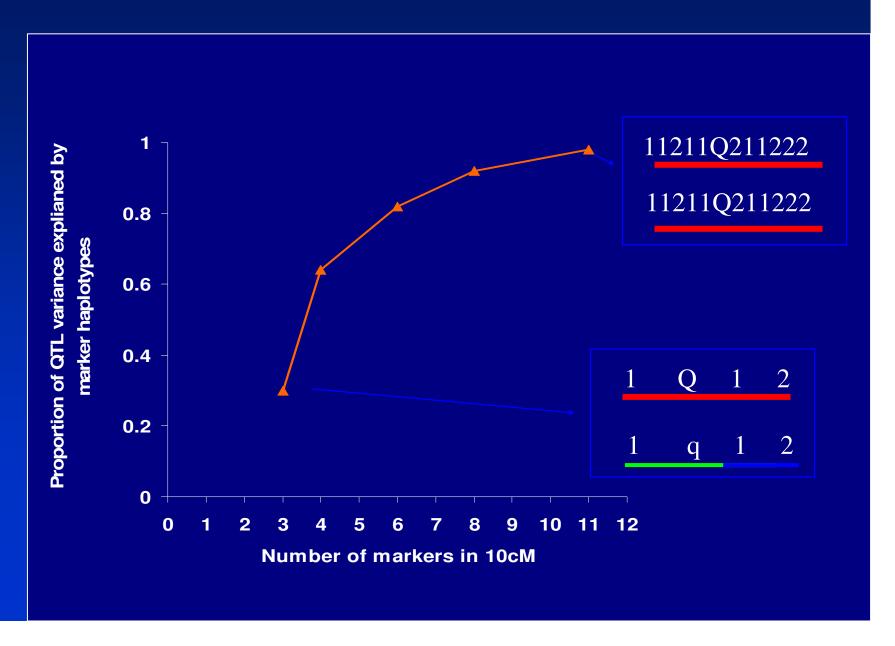
Formation of gamete

1 1 1 q 2 Progeny

1 1 1 Q 2







- If we find two identical haplotypes from the population, what is the probability they carry the same QTL allele?
- Haplotypes identical either because chromosome segments from same common ancestor
- Or because of chance recombination......
- With more markers in haplotype, the chance of creating the same haplotype by recombination becomes small

Model ?

$$y = 1_n' \mu + Xg + Zu + e$$

- Where g is now a vector of haplotype effects dimensions (number of haplotypes observed x 1)
- And X allocates records to haplotyes

Example (eg after using PHASE to infer haplotype)

Animal	Paternal haplotype	Maternal haplotype	
	1	1	1
	2	1	2
	3	2	3
	4	5	4
	5	3	2

• Example (eg after using PHASE to infer haplotype)

Animal	Paternal haplotype	Maternal haplotype	
	1	1	1
	2	1	2
	3	2	3
	4	5	4
	5	3	2

	Haplotype					
• X		1	2	3	4	5
	1	2	0	0	0	0
	2	1	1	0	0	0
Animal	3	0	1	1	0	0
	4	0	0	0	1	1
	5	0	1	1	0	0

- Fit haplotypes as random effects
 - **g** ~ $N(0,\sigma_h^2)$
 - Some haplotypes will be rare, very few observations
 - Fitting the haplotype effect as random regresses the effects back to account for the lack of information

$$\begin{bmatrix} \hat{\mu} \\ \hat{g} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} \mathbf{1_n'1_n} & \mathbf{1_n'X} & \mathbf{1_n'Z} \\ \mathbf{X'1_n} & \mathbf{X'X} & \mathbf{X'Z} \\ \mathbf{Z'1_n} & \mathbf{Z'X} & \mathbf{Z'Z} + \mathbf{A}^{-1}\lambda \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1_n'y} \\ \mathbf{X'y} \\ \mathbf{Z'y} \end{bmatrix}$$

- Fit haplotypes as random effects
 - $\mathbf{g} \sim N(0, \sigma_h^2)$
 - Some haplotypes will be rare, very few observations
 - Fitting the haplotype effect as random regresses the effects back to account for the lack of information
 - $-\lambda_h = \sigma_e^2/\sigma_h^2$

$$\begin{bmatrix} \hat{\mu} \\ \hat{\mathbf{g}} \\ \hat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{1}_{n}' \mathbf{1}_{n} & \mathbf{1}_{n}' \mathbf{X} & \mathbf{1}_{n}' \mathbf{Z} \\ \mathbf{X}' \mathbf{1}_{n} & \mathbf{X}' \mathbf{X} + \mathbf{I} \lambda_{QTL} & \mathbf{X}' \mathbf{Z} \\ \mathbf{Z}' \mathbf{1}_{n} & \mathbf{Z}' \mathbf{X} & \mathbf{Z}' \mathbf{Z} + \mathbf{A}^{-1} \lambda \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1}_{n}' \mathbf{y} \\ \mathbf{X}' \mathbf{y} \\ \mathbf{Z}' \mathbf{y} \end{bmatrix}$$

- There is a "cost" of using haplotypes instead of single markers
- With single markers only one effect to estimate, with haplotypes many effects
- Fewer observations per effect, lower accuracy of estimating each effect

	Proportion of	Maximum	Observed
	QTL variance	number of	number of
	explained	haplotypes	haplotypes
Nearest marker	0.10	2	2
Best marker	0.20	2	2
2 Marker haplotypes	0.15	4	3.4
4 Marker haplotypes	0.28	16	9.4
6 Marker haplotypes	0.55	64	20.8
			<u> </u>

Mapping QTL using LD

- Association testing with single marker regression
- Accounting for population structure
- LD mapping with haplotypes
- The identical by descent (IBD) approach
- Combined linkage-linkage disequilibrium mapping

• Principle:

 Existence of LD implies small segments of chromosome in population which are descended from the same common ancestor (IBD).

Principle:

- Existence of LD implies small segments of chromosome in population which are descended from the same common ancestor (IBD).
- IBD chromosome segments will not only carry identical marker haplotypes; if there is a QTL within chromosome segment, IBD chromosome segments will also carry identical QTL alleles.

• Principle:

- Existence of LD implies small segments of chromosome in population which are descended from the same common ancestor (IBD).
- IBD chromosome segments will not only carry identical marker haplotypes; if there is a QTL within chromosome segment, IBD chromosome segments will also carry identical QTL alleles.
- If two animals carry chromosomes which are IBD at a QTL position, their phenotypes will be correlated.

The model

$$y_i = \mu + u_i + vp_i + vm_i + e_i$$

- Where vp_i and vm_i are the effects of the paternal and maternal QTL alleles respectively
- modelling the effect of the QTL directly rather than assuming a haplotype or marker is in LD with the QTL

- Each animal has it's own QTL alleles
- There is a probability that different QTL alleles are actually IBD
- This is captured in the IBD (G) matrix
- Elements g_{ij} is the probability that QTL allele i and j are IBD.
- This probability is inferred from marker haplotypes
- Dimensions (2*number of animals * 2*number of animals)
- $u \sim (0, \mathbf{A}\sigma_a^2), v \sim (0, \mathbf{G}\sigma_v^2), e \sim \sim (0, \mathbf{I}\sigma_e^2)$

- Building IBD matrix from marker haplotypes
 - Consider three haplotypes drawn from population at random (P is putative QTL position)
 - A 112P112
 - B 212P112
 - C 222P222
 - P(IBD at QTL A,B) >P(IBD at QTL B,C), as longer identical haplotype

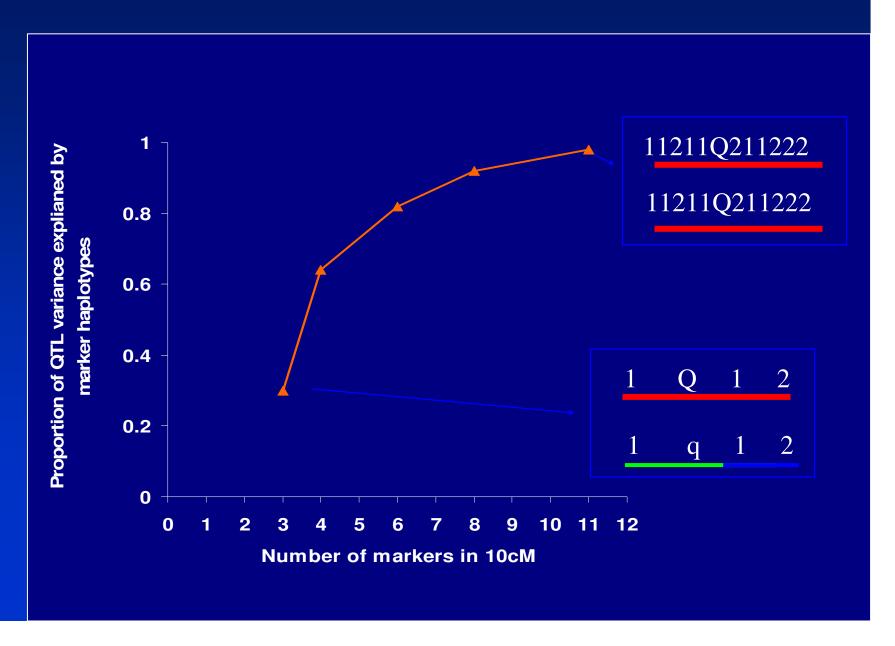
- Building IBD matrix from marker haplotypes
 - Parameters which determine IBD coefficients are
 - extent of LD
 - length of haplotype and
 - number of markers in the haplotype

- Building IBD matrix from marker haplotypes
- Algorithm of Meuwissen and Goddard (2001)
 - deterministically predicts IBD coefficients at putative QTL positions from marker haplotypes

- Building IBD matrix from marker haplotypes
- Algorithm of Meuwissen and Goddard (2001)
 - deterministically predicts IBD coefficients between two marker haplotypes using
 - number of markers flanking QTL position which are identical by state
 - probability identical by chance ~ marker homozygosity
 - extent of LD based on length of haplotype, effective population size

- Building IBD matrix from marker haplotypes
 - An example with Ne = 100
 - 6 markers in 10cM, putative QTL position in centre M_M_Q_M_M
 - Sample four haplotypes from the population
 - 112112, 112112, 122112<u>, 222122</u>
 - IBD matrix is:

	112112	112112	122112	222122
112112	1			
112112	0.82	1		
122112	0.63	0.63	1	
222122	0.49	0.49	0.56	1



- A two stage approach for linkage disequilibrium mapping
 - 1. For each putative QTL position, **IBD** or **G** matrix. IBD matrix has elements g_{ij} =Prob(QTL alleles i and j are identical by descent or IBD)
 - 2. For each position considered in step 1, construct the linear model to estimate QTL variances and other parameters, test for presence of QTL

The model

$$y_i = \mu + u_i + vp_i + vm_i + e_i$$

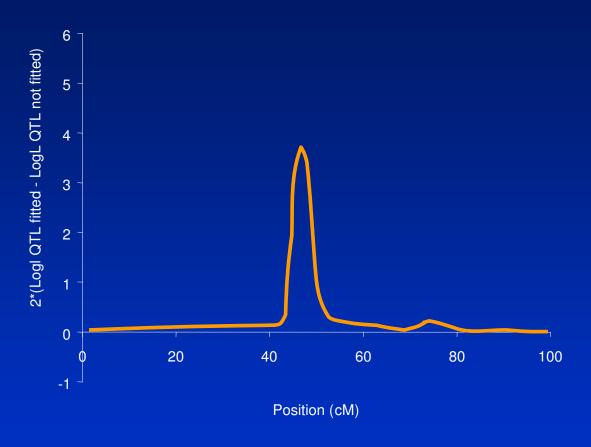
• $u \sim (0, A\sigma_a^2), v \sim (0, G\sigma_v^2), e \sim \sim (0, I\sigma_e^2)$

- Use variance component estimation procedures to find the
 - Estimate of σ_{μ}^2
 - Estimate of σ_v^2
 - Estimate of σ_e^2
 - Which maximise the Log likelihood (LogL) of the data given these parameters
 - Eg. ASREML

- How do we test if the QTL is significant or not?
- Fit the model with no QTL:

$$y_i = \mu + u_i + e_i$$

 Plot -2*(LogL QTL fitted - LogL QTL not fitted) against position

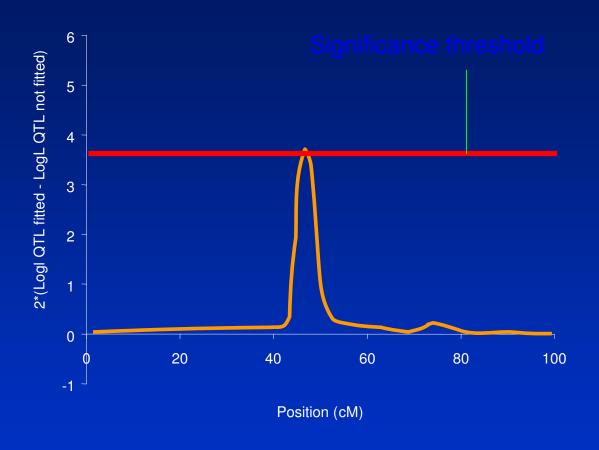


- How do we test if the QTL is significant or not?
- Fit the model with no QTL:

$$y_i = \mu + u_i + e_i$$

- Plot -2*(LogL QTL fitted LogL QTL not fitted) against position
- Is distributed as a $\chi^2_{1,\alpha}$ where α is the desired significance level
- at α =0.05 is 3.84)

Linkage mapping in complex pedigrees



- Confidence interval
 - ➤ Drop of 2 of test statistic from maximum point

Comparison of approaches

- Zhao et al. (2007) compared power and precision of QTL mapping with single marker regression, haplotypes and IBD approach
- They found in simulated data that single marker regression and the IBD approach had similar power and precision
- Calus et al. (2007) found that haplotypes gave slightly greater accuracy than single markers, and that the IBD approach gave much higher accuracies at low marker densities
- Hayes et al. (2007) tried to use real data, and results indicated 6 marker haplotypes were better than single marker regression
- Level of LD, simulation assumptions??

Mapping QTL using LD

- Association testing with single marker regression
- Accounting for population structure
- LD mapping with haplotypes
- The Identical by descent (IBD) approach
- Combined linkage-linkage disequilibrium mapping

- Extent of LD very variable
- LD can exist between loci on different chromosomes!!
- Combine LD and linkage information to filter spurious peaks

- Consider a half sib design
 - LD information from sire haplotypes, maternal hapotypes of progeny
 - Linkage information from paternal haplotypes of progeny

IBD matrix:

	SH	MHP	PHP
SH	[a]	[a]	[b]
MHP	[a]	[a]	[b]
PHP	[b]	[b]	[b]

- a = LD (Meuwissen and Goddard 2001)
- -b = linkage

• In linkage analysis (LA) consider founder alleles (sires, dams) to be unrelated, eg.....

Sire 1211, 1212 Dam 1222, 1211 Progeny 1211, 1222

LA

		S	ire	Da	am	Prog	geny
		Pat	Mat	Pat	Mat	Pat	Mat
Sire	Pat	1					
	Mat	0	1				
Dam	Pat	0	0	1			
	Mat	0	0	0	1		
Progeny	Pat	1	0	0	0	1	
	Mat	0	0	1	0	0	1

Sire 1211, 1212 Dam 1222, 1211 Progeny 1211, 1222

LA

		Sire		Dam		Progeny	
		Pat	Mat	Pat	Mat	Pat	Mat
Sire	Pat	1					
	Mat	0	1				
Dam	Pat	0	0	1			
	Mat	0	0	0	1		
Progeny	Pat	1	0	0	0	1	
	Mat	0	0	1	0	0	1

LD

		Sire		D	am
		Pat	Mat	Pat	Mat
Sire	Pat	1			
	Mat	0.8	1		
Dam	Pat	0.5	0.5	1	
	Mat	0.9	0.5	0.5	1

Sire 1211, 1212 Dam 1222, 1211 Progeny 1211, 1222

LA

		Sire		Dam		Progeny	
		Pat	Mat	Pat	Mat	Pat	Mat
Sire	Pat	1					
	Mat	0	1				
Dam	Pat	0	0	1			
	Mat	0	0	0	1		
Progeny	Pat	1	0	0	0	1	
	Mat	0	0	1	0	0	1

LD

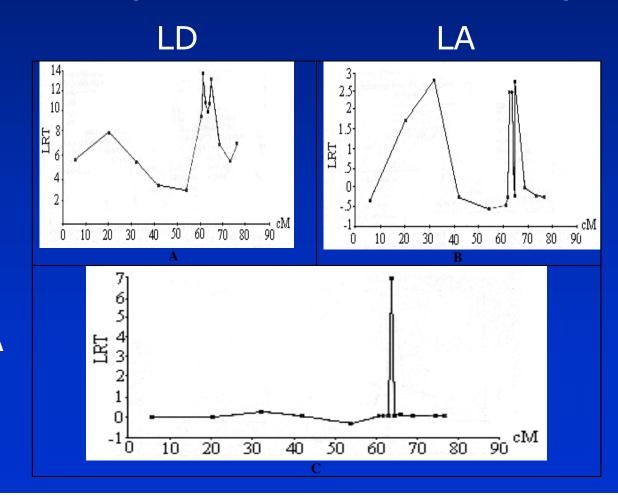
		Sire		Dam	
		Pat	Mat	Pat	Mat
Sire	Pat	1			
	Mat	0.8	1		
Dam	Pat	0.5	0.5	1	
	Mat	0.9	0.5	0.5	1

Sire 1211, 1212 Dam 1222, 1211 Progeny 1211, 1222

LDLA

		Sire		Dam		Progeny	
		Pat	Mat	Pat	Mat	Pat	Mat
Sire	Pat	1					
	Mat	0.8	1				
Dam	Pat	0.5	0.5	1			
	Mat	0.9	0.5	0.5	1		
Progeny	Pat	1	0.8	0.5	0.9	1	
	Mat	0.5	0.5	1	0.5	0.8	1

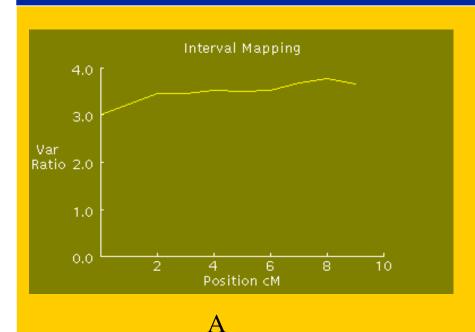
• Example of twinning QTL in Norwegian dairy cattle (Meuwissen et al. 2002)

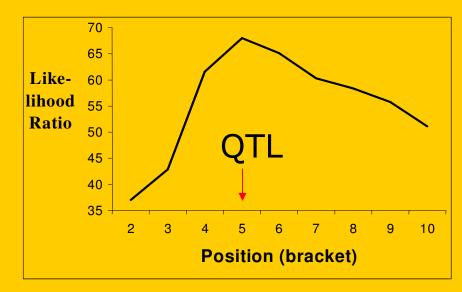


LD-LA

- How much information does LD add to the analysis?
 - Depends on marker spacing and extent of LD

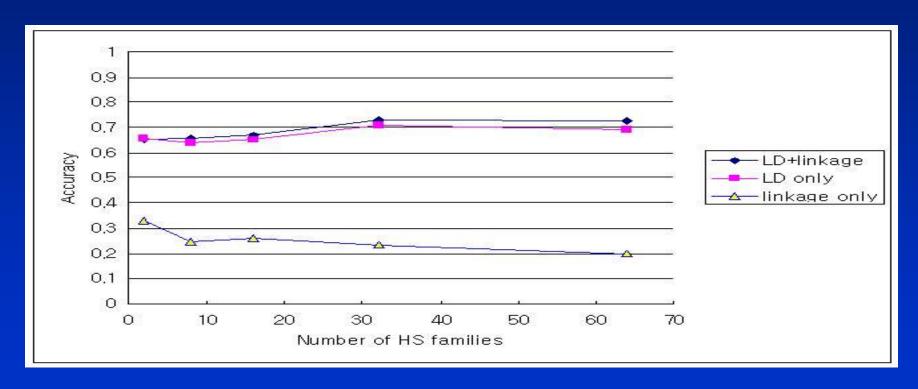
LA LD-LA





В

Can we use half-sib families for LD analysis?



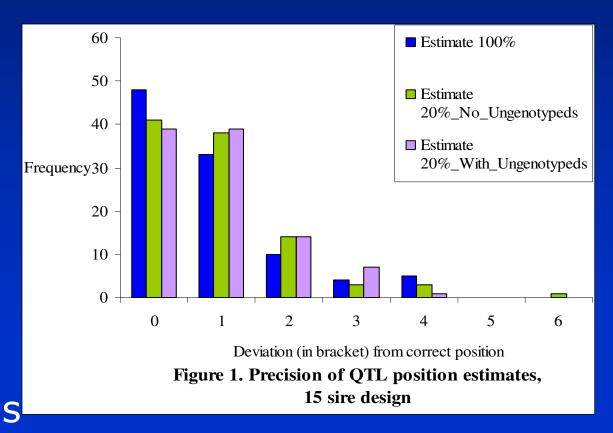
- Yes
 - Dam haplotypes provide LD information

 Number of progeny required to position QTL to a 95% C.I. 3cM interval with different designs:

Population	Number of genotyped progeny required to map QTL to 3cM 95% C.I.
F2	7407
Full sib	12685
Commercial (LDLA)	900

• Of course depends on assumptions about extent of LD $\,\sim$ determined by N_e

- Can we use half-sib families for LD analysis?
 - + selective genotyping ?



 LDLA analysis + selective genotyping = Cheap? experiment able to position QTL with high degree of precision

LD mapping of QTL

- Take home points
 - LD mapping uses information on historical recombinants to narrow QTL C.I.
 - Power depends on extent of LD and marker density
 - Knowledge of extent of LD critical
 - Some suggestion that single marker regression a good approach, with high marker density?
 - IBD approach allows extension to capture LA information
 - v. important with lower marker density >> power
 - filter spurious peaks
 - Half sib designs ideal for LDLA mapping
 - Use LD info from dam haplotypes