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Course overview

• Day 1
– Linkage disequilibrium in animal and plant genomes

• Day 2
– QTL mapping with LD

• Day 3 
– Marker assisted selection using LD

• Day 4 
– Genomic selection

• Day 5
– Genomic selection continued



Marker Assisted Selection using LD

• LD-MAS with single markers

• How many QTL to use in LD-MAS?

• Bias in QTL effects

• LD-MAS with marker haplotypes

• LD-MAS with the IBD approach

• Gene assisted selection

• Optimising the breeding scheme with 
marker information



Marker Assisted Selection using LD

• Marker assisted selection (MAS) can be 
based on DNA markers

– in linkage equilibrium with a QTL (LE-MAS) 

– in linkage disequilibrium with a QTL (LD-MAS)

– actual mutation causing QTL effect (Gene-MAS).  

• All three types of MAS are currently used in 
the livestock industries (Dekkers 2004).  



Table 1. Examples of gene tests used in commercial breeding for different species (D = dairy 

cattle, B = beef cattle, C = poultry, P = pigs, S = sheep) by trait category and type of marker  

Trait category Direct marker 

Linkage disequilibrium 

marker 

Linakge equilibrium 

marker 

 

Congenital defects BLAD (D
a
)   

 Citrulinaemia (D,B
b
)   

 DUMPS (D
c
)   

 CVM (D
d
)   

 

Maple syrup urine 

(D,B
e
)   

 Mannosidosis (D,B
f
)   

 RYR (P
g
) RYR (P

h
)  

Appearance CKIT (P
i
)  Polled (B

n
) 

 

MC1R/MSHR 

(P
j
,B

k
,D

l
)   

 MGF (B
m

)   

Milk quality -Casein (D
o
)   

 ß-lactoglobulin (D
o
)   

 FMO3 (D
p
)   

Meat quality RYR (P
g
) RYR (P

h
)  

 RN/PRKAG3 (P
q
) RN/PRKAG3 (P

r
)  

  A-FABP/FABP4 (P
s
)  

  H-FABP/FABP3 (P
t
)  

  CAST (P
u
, B

v
)  

>15 PICmarq (P
w
)     

  THYR (B
x
)  

  Leptin (By)  

Feed intake MC4R (P
z
)   

Disease Prp (S
aa

) B blood group (C
bb

)  

 F18 (P
cc

) K88 (P
dd

)  

Reproduction Booroola (S
ee

) Booroola (S
ff
)  

 Inverdale(S
gg

) ESR (P
hh

)  

 Hanna (S
ii
) PRLR (P

jj
)  

  RBP4 (P
kk

)  

Growth and 

composition MC4R (P
z
) CAST (P

u
) QTL (P

ll
) 

 IGF-2 (P
mm

) IGF-2 (P
nn

)  

 Myostatin (B
oo

)  QTL (B
pp

) 

 Callipyge (S
qq

) Carwell (S
rr
)  

Milk yield and 

composition DGAT (D
ss

) PRL (D
tt
) QTL (D

uu
) 

 GRH (D
vv

)   

 -Casein (D
o
)   



Marker Assisted Selection using LD

• LE-MAS is most difficult to implement.

– marker-QTL phase within each family must be 
established before an increase in selection 
response can be realised.

• LD-MAS now very attractive due to very 
large numbers of single nucleotide 
polymorphism (SNP) markers suitable for LD 
mapping now available.

• Gene-MAS requires enormous amount of 
work and resources!! 



Marker Assisted Selection using LD

• LD-MAS as a two step procedure.

– Step 1. Effects of a marker or set of 
markers are estimated in a reference 
population.  

– Step 2. The breeding values of a group of 
selection candidates are calculated using 

the marker information.



Marker Assisted Selection using LD

• LD-MAS as a two step procedure.

– Step 1. Effects of a marker or set of 
markers are estimated in a reference 
population.  

– Step 2. The breeding values of a group of 
selection candidates are calculated using 

the marker information.

• In many cases, the selection 
candidates will have no phenotypic 
information of their own, eg young 
dairy bulls which are progeny test 

candidates.



Marker Assisted Selection using LD

• LD-MAS as a two step procedure.

– Step 1. Effects of a marker or set of 
markers are estimated in a reference 
population.

– Step 2. The breeding values of a group of 
selection candidates are calculated using 

the marker information.



LD-MAS with single markers

• Estimate effects of marker or markers 
in reference population
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Marker Assisted Selection using LD

• LD-MAS as a two step procedure.

– Step 1. Effects of a marker or set of 
markers are estimated in a reference 
population.  

– Step 2. The breeding values of a group of 
selection candidates are calculated using 

the marker information.



LD-MAS with single markers

• Predict breeding values using marker 
information:

∧∧

+= gXuMEBV



LD-MAS with single markers

• Example

Animal Sire Dam Phenotpe
SNP 
allele 1

SNP
allele 2

1 0 0 3.53 1 1

2 0 0 3.54 1 2

3 0 0 3.83 1 2

4 0 0 4.87 2 2

5 0 0 1.91 1 2

6 0 0 2.34 1 1

7 0 0 2.65 1 1

8 0 0 3.76 1 2

9 0 0 3.69 1 2

10 0 0 3.69 1 2

11 1 2 - 1 2

12 1 4 - 2 1

13 5 6 - 1 1

14 5 7 - 2 1

15 5 8 - 2 2



LD-MAS with single markers

• The data was simulated as a SNP 
effect of 1 for 2 allele plus effect of 
sire 1 of 3 and sire 5 of -3 + random 
effect



LD-MAS with single markers

• Example

Animal Sire Dam Phenotpe
SNP 
allele 1

SNP
allele 2

1 0 0 3.53 1 1

2 0 0 3.54 1 2

3 0 0 3.83 1 2

4 0 0 4.87 2 2

5 0 0 1.91 1 2

6 0 0 2.34 1 1

7 0 0 2.65 1 1
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Marker Assisted Selection using LD

• LD-MAS as a two step procedure.

– Step 1. Effects of a marker or set of 
markers are estimated in a reference 
population.

– Step 2. The breeding values of a group of 
selection candidates are calculated using 

the marker information.



LD-MAS with single markers

• Build:
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LD-MAS with single markers

• Example

• 1n and X

record 1n X 

1 1 0 

2 1 1 

3 1 1 

4 1 2 

5 1 1 

6 1 0 

7 1 0 

8 1 1 

9 1 1 

10 1 1 

 

Animal Sire Dam Phenotpe 
SNP 
allele 1 

SNP 
allele 2 

1 0 0 3.53 1 1 

2 0 0 3.54 1 2 

3 0 0 3.83 1 2 

4 0 0 4.87 2 2 

5 0 0 1.91 1 2 

6 0 0 2.34 1 1 

7 0 0 2.65 1 1 

8 0 0 3.76 1 2 

9 0 0 3.69 1 2 

10 0 0 3.69 1 2 

11 1 2 - 1 2 

12 1 4 - 2 1 

13 5 6 - 1 1 

14 5 7 - 2 1 

15 5 8 - 2 2 

 



LD-MAS with single markers

• Example

• Z

        animal         

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

 4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

 5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

 6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

record 7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

 8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

 9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

 10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

 

Animal Sire Dam Phenotpe 
SNP 
allele 1 

SNP 
allele 2 

1 0 0 3.53 1 1 

2 0 0 3.54 1 2 

3 0 0 3.83 1 2 

4 0 0 4.87 2 2 

5 0 0 1.91 1 2 

6 0 0 2.34 1 1 

7 0 0 2.65 1 1 

8 0 0 3.76 1 2 

9 0 0 3.69 1 2 

10 0 0 3.69 1 2 

11 1 2 - 1 2 

12 1 4 - 2 1 

13 5 6 - 1 1 

14 5 7 - 2 1 

15 5 8 - 2 2 

 



LD-MAS with single markers

• Example

• A

• λλλλ=1/2

        Animal         

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 1 1               

 2 0 1              

 3 0 0 1             

 4 0 0 0 1            

 5 0 0 0 0 1           

 6 0 0 0 0 0 1          

animal 7 0 0 0 0 0 0 1         

 8 0 0 0 0 0 0 0 1        

 9 0 0 0 0 0 0 0 0 1       

 10 0 0 0 0 0 0 0 0 0 1      

 11 0.5 0.5 0 0 0 0 0 0 0 0 1     

 12 0.5 0 0 0.5 0 0 0 0 0 0 0.25 1    

 13 0 0 0 0 0.5 0.5 0 0 0 0 0 0 1   

 14 0 0 0 0 0.5 0 0.5 0 0 0 0 0 0.25 1  

 15 0 0 0 0 0.5 0 0 0.5 0 0 0 0 0.25 0.25 1 

 

Animal Sire Dam Phenotpe 
SNP 
allele 1 

SNP 
allele 2 

1 0 0 3.53 1 1 

2 0 0 3.54 1 2 

3 0 0 3.83 1 2 

4 0 0 4.87 2 2 

5 0 0 1.91 1 2 

6 0 0 2.34 1 1 

7 0 0 2.65 1 1 

8 0 0 3.76 1 2 

9 0 0 3.69 1 2 

10 0 0 3.69 1 2 

11 1 2 - 1 2 

12 1 4 - 2 1 

13 5 6 - 1 1 

14 5 7 - 2 1 

15 5 8 - 2 2 

 



LD-MAS with single markers

• Example

• Solve 
equations..

∧

µ   2.69 
∧

g   0.87 

∧

u  1 0.56 

 2 -0.01 

 3 0.19 

 4 0.3 

 5 -1.1 

 6 -0.23 

 7 -0.03 

 8 0.14 

 9 0.09 

 10 0.09 

 11 0.28 

 12 0.43 

 13 -0.67 

 14 -0.56 

 15 -0.48 
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Marker Assisted Selection using LD

• LD-MAS as a two step procedure.

– Step 1. Effects of a marker or set of 
markers are estimated in a reference 
population.  

– Step 2. The breeding values of a group of 
selection candidates are calculated using 

the marker information.



LD-MAS with single markers

• Predict breeding values using marker 
information:

∧∧

+= gXuMEBV



LD-MAS with single markers

• Predict breeding values using marker 
information:

∧

u X

∧

g
MEBV

0.28 1 0.87 1.14

0.43 1 1.3

-0.67 + 0 = -0.67

-0.56 1 0.3

-0.48 2 1.26
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LD-MAS with single markers

• Predict breeding values using marker 
information:

∧

u X

∧

g
MEBV

0.28 1 0.87 1.14

0.43 1 1.3

-0.67 + 0 = -0.67

-0.56 1 0.3

-0.48 2 1.26

∧∧

+= gXuMEBV



LD-MAS with single markers

• The data was simulated as a SNP 
effect of 1 for 2 allele plus effect 
of sire 1 of 3 and sire 5 of -3 + 
random effect

∧

u X

∧

g
MEBV

0.28 1 0.87 1.14

0.43 1 1.3

-0.67 + 0 = -0.67

-0.56 1 0.3

-0.48 2 1.26



LD-MAS with single markers

• Corr(MEBV,TBV) =0.93

∧

u X

∧

g MEBV TBV

0.28 1 0.87 1.14 1.75

0.43 1 1.3 1.75

-0.67 + 0 = -0.67 -0.75

-0.56 1 0.3 0.25

-0.48 2 1.26 1.25



LD-MAS with single markers

• Corr(MEBV,TBV) =0.93

• Corr(EBV,TBV)=?
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LD-MAS with single markers

• Corr(MEBV,TBV) =0.93

• Corr(EBV,TBV)=0.88
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Marker Assisted Selection using LD

• LD-MAS with a single marker

• How many QTL to use in LD-MAS?

• Bias in QTL effects

• LD-MAS with marker haplotypes

• LD-MAS with the IBD approach

• Gene assisted selection

• Optimising the breeding scheme with 
marker information



How many QTL to use in LD-MAS

• Advantage of MAS over non-MAS 
approximately proportional to 
proportion of total genetic variance 
explained by QTL

• Estimates of number of QTL per trait 
between 100 and 200

• Do we need to track all these with 
markers?



How many QTL to use in LD-MAS

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

Percentage  o f Q TL  (ranked in  o rder o f s ize)

P
e

rc
e

n
ta

g
e

 o
f 

g
e

n
e

ti
c
 v

a
ri

a
n

c
e

 

a
c
c
o

u
n

te
d

 f
o

r

Pigs

Dairy



How many QTL to use in LD-MAS

• If we use 10-20 QTL per trait in our 
LD-MAS program, we will exploit ~ 
50% of the genetic variance. 

• Assumes we have perfect knowledge 
of the QTL alleles. 

• The proportion of genetic variance 
captured at each QTL in LD-MAS 
depends on the extent of linkage 
disequilibrium between the marker 
and the QTL.



How many QTL to use in LD-MAS

• Use multiple regression to 
estimate vector of SNP effects 
with multiple markers
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How many QTL to use in LD-MAS

• Use multiple regression to 
estimate vector of SNP effects 
with multiple markers
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How many QTL to use in LD-MAS

• Use multiple regression to 
estimate vector of SNP effects 
with multiple markers

• Accounts for the fact that some 
SNPs may be picking up the same 
QTL
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LD-MAS with single markers

• Predict breeding values using marker 
information:
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How many QTL to use in LD-MAS

• Use multiple regression to 
estimate vector of SNP effects 
with multiple markers (random?)

• Use variance component 
estimation to get SNP effects
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Marker Assisted Selection using LD

• LD-MAS with a single marker

• How many QTL to use in LD-MAS?

• Bias in QTL effects

• LD-MAS with marker haplotypes

• LD-MAS with the IBD approach

• Gene assisted selection

• Optimising the breeding scheme with 
marker information



Accounting for bias in QTL effects

• Strong tendency to overestimate QTL effects 
in a genome scan, as these effects can 
exceed significance thresholds if the 
estimate is larger than the actual effect due 
to a large positive error term 
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Accounting for bias in QTL effects

• Strong tendency to overestimate QTL effects 
in a genome scan, as these effects can 
exceed significance thresholds if the 
estimate is larger than the actual effect due 
to a large positive error term 

• This over-estimation is more pronounced in 
genome scans of low power, positive error 
term must be large to overcome the 
significance threshold.  

• If the QTL effect is over-estimated, the 
advantage of MAS can be eroded 
substantially (eg LD-MAS with a single 
marker)

• Must regress QTL effects prior to use in MAS



Accounting for bias in QTL effects
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Accounting for bias in QTL effects

• Options for estimating unbiased estimates of 
QTL effect
– Best method is to estimate QTL effects in a 
population which is completely independent of the 
sample used in the original genome scan where 
the QTL were first detected.  

– This will also validate that the markers are not an 
artefact of the statistical model used in the 
genome scan or some unaccounted for population 
stratification. 

– But maybe too expensive

– Use prior knowledge of distribution of QTL effects 
to regress effects

– Cross validation



Accounting for bias in QTL effects

• Use prior knowledge of distribution of QTL effects 
to regress effects

• Then for a given size of experiment and estimated 
size of effect, we can calculate the true effect 



Accounting for bias in QTL effects

• Use prior knowledge of distribution of QTL effects 
to regress effects

• Then for a given size of experiment and estimated 
size of effect, we can calculate the true effect 

• See Weller et al. 2005 for distributions of QTL 
effects across traits



Accounting for bias in QTL effects

• Cross validation

–split data set in two

– regress solutions from data set two on 
data set one to get bx1x2

– then the regression of the true effects of 
the SNPs on the solutions from the full 
data set is

•bu,xt = 2bx1x2/(1+bx1x2)



Accounting for bias in QTL effects

• Cross validation
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Accounting for bias in QTL effects

• Cross validation
–split data set in two

– regress solutions from data set two on 
data set one to get bx1x2

– then the regression of the true effects of 
the SNPs on the solutions from the full 
data set is

•bu,xt = 2bx1x2/(1+bx1x2)
• = 0.44 



Marker Assisted Selection using LD

• LD-MAS with single markers

• How many QTL to use in LD-MAS?

• Bias in QTL effects

• LD-MAS with marker haplotypes

• LD-MAS with the IBD approach

• Gene assisted selection

• Optimising the breeding scheme with 
marker information



LD-MAS with haplotypes

• Model:

• g is a vector of haplotype effects, eg.

∧∧

+= gXuMEBV

Haplotype Effect

1 0.2

2 -0.12

3 -0.11

4 0.21



LD-MAS with haplotypes

• Accuracy of LD-MAS with haplotypes 
– Depends on 

• Proportion of QTL variance explained by 
haplotypes

• Number of haplotype effects to estimate

• Number of phenotypic records 

• Accuracy of inferring haplotypes



LD-MAS with haplotypes

• Accuracy of LD-MAS with haplotypes 
– Depends on 

• Proportion of QTL variance explained by 
haplotypes

• Number of haplotype effects to estimate

• Number of phenotypic records 

• Accuracy of inferring haplotypes



LD-MAS with haplotypes

• Accuracy of LD-MAS with haplotypes 
– Depends on 

• Proportion of QTL variance explained by 
haplotypes
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LD-MAS with haplotypes

• Example:
• 10 000 SNPs genotyped in 379 Angus 
animals

• Select a SNP from the 10 000 at random to 
be a “QTL”
– determine

• Nearest marker
• 2, 4 or 6 marker haplotypes

– Haplotypes estimated using PHASE program (Stephens et al. 
2001)

– This takes into account LD structure in the cattle 
populations

• Calculate the proportion of QTL variance 
explained by the marker haplotypes. 
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LD-MAS with haplotypes

• Example:

 Proportion of 

QTL variance 

explained 

Maximum 

number of 

haplotypes 

Observed 

number of 

haplotypes 

Nearest marker 0.10 2 2 

Best marker 0.20 2 2 

2 Marker haplotypes 0.15 4 3.4 

4 Marker haplotypes 0.28 16 9.4 

6 Marker haplotypes 0.55 64 20.8 
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LD-MAS with haplotypes

• Accuracy of estimating QTL allele effects 
from haplotypes:
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LD-MAS with haplotypes

• Accuracy of estimating QTL allele effects 
from haplotypes:
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LD-MAS with haplotypes

• Accuracy of LD-MAS with haplotypes 
– Depends on 

• Proportion of QTL variance explained by 
haplotypes

• Number of haplotype effects to estimate

• Number of phenotypic records 

• Accuracy of inferring haplotypes??



Marker Assisted Selection using LD

• LD-MAS with single markers

• How many QTL to use in LD-MAS?

• Bias in QTL effects

• LD-MAS with marker haplotypes

• LD-MAS with the IBD approach

• Gene assisted selection

• Optimising the breeding scheme with 
marker information



LD-MAS with the IBD approach

• MEBVs:
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LD-MAS with the IBD approach

• MEBVs:

• Where W is a matrix allocating records 
to QTL allele effects
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LD-MAS with the IBD approach

• Has the potential to be most accurate 
method for LD-MAS because can 
capture linkage information as well
– Particularly with sub-optimal markers 
densities



Marker Assisted Selection using LD

• LD-MAS with single markers

• How many QTL to use in LD-MAS?

• Bias in QTL effects

• LD-MAS with marker haplotypes

• LD-MAS with the IBD approach

• Gene assisted selection

• Optimising the breeding scheme with 
marker information



• Greatest increases in response (not 
limited by LD)

• Simplest, cheapest to implement in 
breeding program

– No need to establish phase within families

– Cost of discovery very high

– Number of examples now (Dekkers 2004)

– May become apparent that mode of 
inheritance is not additive

– Eg. IGF2 mutation in pigs is imprinted (only 
expressed if mutated allele from father)

Gene Assisted Selection



Marker Assisted Selection using LD

• LD-MAS with single markers

• How many QTL to use in LD-MAS?

• Bias in QTL effects

• LD-MAS with marker haplotypes

• LD-MAS with the IBD approach

• Gene assisted selection

• Optimising the breeding scheme with 
marker information



Optimising the breeding scheme 
with MAS

• Which traits

• Age at selection?



• Expected response from MAS

– Traits measured on both sexes before selection << traits measured on one sex 

before selection << traits measured after selection 

<< traits measured on relatives

Traits measured 

before selection 

Traits measured 

on one sex before 

selection 

Traits measured 

after selection 

Traits measured 

on relatives 

Growth Feed intake Pigs born alive Carcass quality 

Fatness Milk production Fertility  Disease 

resistance (fish) 

  Disease 

resistance (cattle) 

 

 

Optimising the breeding scheme 
with MAS
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Optimising the breeding scheme 
with MAS

• Which traits

• Age at selection

–G=irσg/L

• where G =genetic gain

• i is the intensity of selection

• r is the accuracy of selection

• σg is the genetic standard deviation and 

• L is the generation length



Optimising the breeding scheme 
with MAS

• Age at selection

– We have already discussed improving r

– What about L?

• Accuracy of traditional EBVs increase as animal ages 

and it and its relatives acquire phenotypic data. 

• But animals can be typed for markers at any age 

• Gain in accuracy from markers greatest at young age. 

• So if selection optimised, marker data should lead to a 

decrease in generation length

• Eg. in dairy cattle selected for milk production, MAS 

leads to greater gains if selection of yearling bulls and 

cows is practiced than if a traditional progeny testing 

system is adhered to 

• Reproductive technologies?



• Markers in LD with QTL relatively easy to use 
in breeding programs

• Using haplotypes may improve accuracy?

• IBD approach allows linkage information to 
be used as well

• Response: Traits measured on both sexes before selection << traits 
measured on one sex before selection << traits measured after 

selection << traits measured on relatives

• Optimal use of marker information with 
selection at younger ages

Take home points


