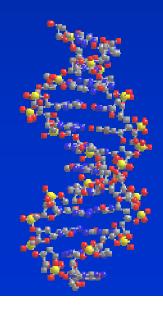


Linkage Disequilbrium to Genomic Selection



Course overview

- Day 1
 - Linkage disequilibrium in animal and plant genomes
- Day 2
 - QTL mapping with LD
- Day 3
 - Marker assisted selection using LD
- Day 4
 - Genomic selection
- Day 5
 - Genomic selection continued

- LD-MAS with single markers
- How many QTL to use in LD-MAS?
- Bias in QTL effects
- LD-MAS with marker haplotypes
- LD-MAS with the IBD approach
- Gene assisted selection
- Optimising the breeding scheme with marker information

- Marker assisted selection (MAS) can be based on DNA markers
 - in linkage equilibrium with a QTL (LE-MAS)
 - in linkage disequilibrium with a QTL (LD-MAS)
 - actual mutation causing QTL effect (Gene-MAS).
- All three types of MAS are currently used in the livestock industries (Dekkers 2004).

Table 1. Examples of gene tests used in commercial breeding for different species (D = dairy cattle, B = beef cattle, C = poultry, P = pigs, S = sheep) by trait category and type of marker

		Linkage disequilibrium	Linakge equilibrium
Trait category	Direct marker	marker	marker
	F 2-	i	
Congenital defects	BLAD (D ^a)		
	Citrulinaemia (D,B ^b)		
	DUMPS (D ^c)		
	CVM (D ^d)		
	Maple syrup urine (D,B ^e)		
	Mannosidosis (D,B ^f)		
	RYR (P ^g)	RYR (Ph)	
Appearance	CKIT (Pi)		Polled (B ⁿ)
	$MC1R/MSHR$ (P^{j},B^{k},D^{l})		
	MGF (B ^m)		
Milk quality	-Casein (D°)		
	β-lactoglobulin (D°)		
	FMO3 (D ^p)		
Meat quality	RYR (P ^g)	RYR (Ph)	
	RN/PRKAG3 (P ^q)	RN/PRKAG3 (P ^r)	
		A-FABP/FABP4 (P ^s)	
		H-FABP/FABP3 (Pt)	
		$CAST(P^{u}, B^{v})$	
>15 PICmarq (P ^w)			
* ` ′		THYR (B ^x)	1
		Leptin (B ^y)	1
Feed intake	MC4R (P ^z)		1
Disease	Prp (S ^{aa})	B blood group (Cbb)	
	F18 (P ^{cc})	K88 (P ^{dd})	
Reproduction	Booroola (S ^{ee})	Booroola (Sff)	
	Inverdale(S ^{gg})	ESR (Phh)	1
	Hanna (S ⁱⁱ)	PRLR (P ^{ij})	
		RBP4 (P ^{kk})	ĺ
Growth and			ĺ
composition	MC4R (P ^z)	CAST (P ^u)	QTL (P ^{ll})
	IGF-2 (P ^{mm})	IGF-2 (P ⁿⁿ)	
	Myostatin (B ^{oo})		QTL (B ^{pp})
	Callipyge (S ^{qq})	Carwell (S ^{rr})	
Milk yield and	1.0		
composition	DGAT (D ^{ss})	PRL (D ^{tt})	QTL (D ^{uu})
	GRH (D ^{vv})		
	-Casein (D°)		

- LE-MAS is most difficult to implement.
 - marker-QTL phase within each family must be established before an increase in selection response can be realised.
- LD-MAS now very attractive due to very large numbers of single nucleotide polymorphism (SNP) markers suitable for LD mapping now available.
- Gene-MAS requires enormous amount of work and resources!!

- LD-MAS as a two step procedure.
 - Step 1. Effects of a marker or set of markers are estimated in a reference population.
 - Step 2. The breeding values of a group of selection candidates are calculated using the marker information.

- LD-MAS as a two step procedure.
 - Step 1. Effects of a marker or set of markers are estimated in a reference population.
 - Step 2. The breeding values of a group of selection candidates are calculated using the marker information.
- In many cases, the selection candidates will have no phenotypic information of their own, eg young dairy bulls which are progeny test candidates.

- LD-MAS as a two step procedure.
 - Step 1. Effects of a marker or set of markers are estimated in a reference population.
 - Step 2. The breeding values of a group of selection candidates are calculated using the marker information.

 Estimate effects of marker or markers in reference population

$$\mathbf{y} = \mathbf{1}_{\mathbf{n}} \, \mu + \mathbf{X} \, g + \mathbf{Z} \mathbf{u}$$

$$\begin{bmatrix} \hat{\mu} \\ \hat{g} \\ \hat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{1_n'1_n} & \mathbf{1_n'X} & \mathbf{1_n'Z} \\ \mathbf{X'1_n} & \mathbf{X'X} & \mathbf{X'Z} \\ \mathbf{Z'1_n} & \mathbf{Z'X} & \mathbf{Z'Z} + \mathbf{A}^{-1}\lambda \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1_n'y} \\ \mathbf{X'y} \\ \mathbf{Z'y} \end{bmatrix}$$

- LD-MAS as a two step procedure.
 - Step 1. Effects of a marker or set of markers are estimated in a reference population.
 - Step 2. The breeding values of a group of selection candidates are calculated using the marker information.

Predict breeding values using marker information:

$$\mathbf{MEBV} = \mathbf{u} + \mathbf{X} \mathbf{g}$$

• Example

				SNP	SNP
Animal	Sire	Dam	Phenotpe	allele 1	allele 2
1	0	0	3.53	1	1
2	0	0	3.54	1	2
3	0	0	3.83	1	2
4	0	0	4.87	2	2
5	0	0	1.91	1	2
6	0	0	2.34	1	1
7	0	0	2.65	1	1
8	0	0	3.76	1	2
9	0	0	3.69	1	2
10	0	0	3.69	1	2
11	1	2	-	1	2
12	1	4	-	2	1
13	5	6	-	1	1
14	5	7	-	2	1
15	5	8	-	2	2

 The data was simulated as a SNP effect of 1 for 2 allele plus effect of sire 1 of 3 and sire 5 of -3 + random effect

Example

				SNP	SNP
Animal	Sire	Dam	Phenotpe	allele 1	allele 2
1	0	0	3.53	1	1
2	0	0	3.54	1	2
3	0	0	3.83	1	2
4	0	0	4.87	2	2
5	0	0	1.91	1	2
6	0	0	2.34	1	1
7	0	0	2.65	1	1
8	0	0	3.76	1	2
9	0	0	3.69	1	2
10	0	0	3.69	1	2
11	1	2	-	1	2
12	1	4	-	2	1
13	5	6	-	1	1
14	5	7	-	2	1
15	5	8	-	2	2

- LD-MAS as a two step procedure.
 - Step 1. Effects of a marker or set of markers are estimated in a reference population.
 - Step 2. The breeding values of a group of selection candidates are calculated using the marker information.

• Build:

$$\begin{bmatrix} \hat{\mu} \\ \hat{g} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} \mathbf{1_n'1_n} & \mathbf{1_n'X} & \mathbf{1_n'Z} \\ \mathbf{X'1_n} & \mathbf{X'X} & \mathbf{X'Z} \\ \mathbf{Z'1_n} & \mathbf{Z'X} & \mathbf{Z'Z} + \mathbf{A}^{-1}\lambda \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1_n'y} \\ \mathbf{X'y} \\ \mathbf{Z'y} \end{bmatrix}$$

- Example
- 1_n and X

record	1n	×	(
1		1	0
2		1	1
3		1	1
4		1	2
4 5		1	1
6		1	0
7		1	0
8		1	1
9		1	1
10		1	1

				SNP	SNP
Animal	Sire	Dam	Phenotpe	allele 1	allele 2
1	00	0	3.53	1	1
2	0	0	3.54	1	2
3	0	0	3.83	1	2
4	0	0	4.87	2	2
5	0	0	1.91	1	2
6	0	0	2.34	1	1
7	0	0	2.65	1	1
8	0	0	3.76	1	2
9	0	0	3.69	1	2
10	0	0	3.69	1	2
11	1	2	-	1	2
12	1	4	-	2	1
13	5	6	-	1	1
14	5	7	-	2	1
15	5	8	-	2	2

- Example
- **Z**

				SNP	SNP
Animal	Sire	Dam	Phenotpe	allele 1	allele 2
1	0	0	3.53	1	1
2	0	0	3.54	1	2
3	0	0	3.83	1	2
4	0	0	4.87	2	2
5	0	0	1.91	1	2
6	0	0	2.34	1	1
7	0	0	2.65	1	1
8	0	0	3.76	1	2
9	0	0	3.69	1	2
10	0	0	3.69	1	2
11	1	2	-	1	2
12	1	4	-	2	1
13	5	6	-	1	1
14	5	7	-	2	1
15	5	8	-	2	2

								animal								
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	3	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	4	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	5	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	6	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
record	7	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	8	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	9	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	10	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0

- Example
- A
- $\lambda = 1/2$

				SNP	SNP
Animal	Sire	Dam	Phenotpe	allele 1	allele 2
1	0	0	3.53	1	1
2	0	0	3.54	1	2
3	0	0	3.83	1	2
4	0	0	4.87	2	2
5	0	0	1.91	1	2
6	0	0	2.34	1	1
7	0	0	2.65	1	1
8	0	0	3.76	1	2
9	0	0	3.69	1	2
10	0	0	3.69	1	2
11	1	2	-	1	2
12	1	4	-	2	1
13	5	6	-	1	1
14	5	7	-	2	1
15	5	8	-	2	2

								Animal								
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	1	1														
	2	0	1													
	3	0	0	1												
	4	0	0	0	1											
	5	0	0	0	0	1										
	6	0	0	0	0	0	1									
animal	7	0	0	0	0	0	0	1								
	8	0	0	0	0	0	0	0	1							
	9	0	0	0	0	0	0	0	0	1						
	10	0	0	0	0	0	0	0	0	0	1					
	11	0.5	0.5	0	0	0	0	0	0	0	0	1				
	12	0.5	0	0	0.5	0	0	0	0	0	0	0.25	1			
	13	0	0	0	0	0.5	0.5	0	0	0	0	0	0	1		
	14	0	0	0	0	0.5	0	0.5	0	0	0	0	0	0.25	1	
	15	0	0	0	0	0.5	0	0	0.5	0	0	0	0	0.25	0.25	1

- Example
- Solve equations...

$$\begin{bmatrix} \hat{\mu} \\ \hat{g} \\ \hat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{1_n'1_n} & \mathbf{1_n'X} & \mathbf{1_n'Z} \\ \mathbf{X'1_n} & \mathbf{X'X} & \mathbf{X'Z} \\ \mathbf{Z'1_n} & \mathbf{Z'X} & \mathbf{Z'Z} + \mathbf{A}^{-1}\lambda \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1_n'y} \\ \mathbf{X'y} \\ \mathbf{Z'y} \end{bmatrix}$$

^		
μ		2.69
^		
8		0.87
^		
и	1	0.56
	2	-0.01
	3	0.19
	4	0.3
	5	-1.1
	6	-0.23
	7	-0.03
	8	0.14
	9	0.09
	10	0.09
	11	0.28
	12	0.43
	13	-0.67
	14	-0.56
	15	-0.48

- LD-MAS as a two step procedure.
 - Step 1. Effects of a marker or set of markers are estimated in a reference population.
 - Step 2. The breeding values of a group of selection candidates are calculated using the marker information.

Predict breeding values using marker information:

$$\mathbf{MEBV} = \mathbf{u} + \mathbf{X} \mathbf{g}$$

Predict breeding values using marker information:

$$\mathbf{MEBV} = \overset{\wedge}{\mathbf{u}} + \mathbf{X} \hat{g}$$

0.28 0.43 -0.67 -0.56 -0.48

Predict breeding values using marker information:

$$\mathbf{MEBV} = \overset{\wedge}{\mathbf{u}} + \mathbf{X} \hat{g}$$

^			^
u		X	g
0.28		1	0.87
0.43		1	
-0.67	+	0	
-0.56		1	
-0.48		2	

Predict breeding values using marker information:

$$\mathbf{MEBV} = \overset{\wedge}{\mathbf{u}} + \mathbf{X} \hat{g}$$

^			^		MEBV
u		X	g		
0.28		1	0.87		1.14
0.43		1			1.3
-0.67	+	0		=	-0.67
-0.56		1			0.3
-0.48		2			1.26

 The data was simulated as a SNP effect of 1 for 2 allele plus effect of sire 1 of 3 and sire 5 of -3 + random effect

^ u		X	^ g		MEBV
0.28		1	0.87		1.14
0.43		1			1.3
-0.67	+	0		=	-0.67
-0.56		1			0.3
-0.48		2			1.26

• Corr(MEBV,TBV) = 0.93

^			^			
u		X	g		MEBV	TBV
0.28		1	0.87		1.14	1.75
0.43		1			1.3	1.75
-0.67	+	0		=	-0.67	-0.75
-0.56		1			0.3	0.25
-0.48		2			1.26	1.25

- Corr(MEBV,TBV) = 0.93
- Corr(EBV,TBV)=?

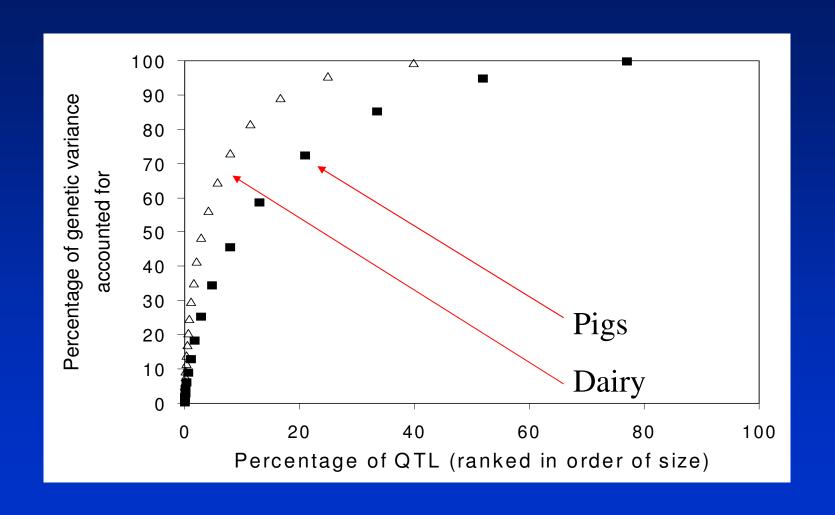
$$\begin{bmatrix} \hat{\mu} \\ \hat{\mathbf{u}} \end{bmatrix} = \begin{bmatrix} \mathbf{1_n'1_n} & \mathbf{1_n'Z} \\ \mathbf{Z'1_n} & \mathbf{Z'Z + A^{-1}\lambda} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1_n'y} \\ \mathbf{Z'y} \end{bmatrix}$$

- Corr(MEBV, TBV) = 0.93
- Corr(EBV,TBV)=0.88

$$\begin{bmatrix} \hat{\mu} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} \mathbf{1_n'1_n} & \mathbf{1_n'Z} \\ \mathbf{Z'1_n} & \mathbf{Z'Z} + \mathbf{A}^{-1}\lambda \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1_n'y} \\ \mathbf{Z'y} \end{bmatrix}$$

- LD-MAS with a single marker
- How many QTL to use in LD-MAS?
- Bias in QTL effects
- LD-MAS with marker haplotypes
- LD-MAS with the IBD approach
- Gene assisted selection
- Optimising the breeding scheme with marker information

- Advantage of MAS over non-MAS approximately proportional to proportion of total genetic variance explained by QTL
- Estimates of number of QTL per trait between 100 and 200
- Do we need to track all these with markers?



- If we use 10-20 QTL per trait in our LD-MAS program, we will exploit ~ 50% of the genetic variance.
- Assumes we have perfect knowledge of the QTL alleles.
- The proportion of genetic variance captured at each QTL in LD-MAS depends on the extent of linkage disequilibrium between the marker and the QTL.

 Use multiple regression to estimate vector of SNP effects with multiple markers

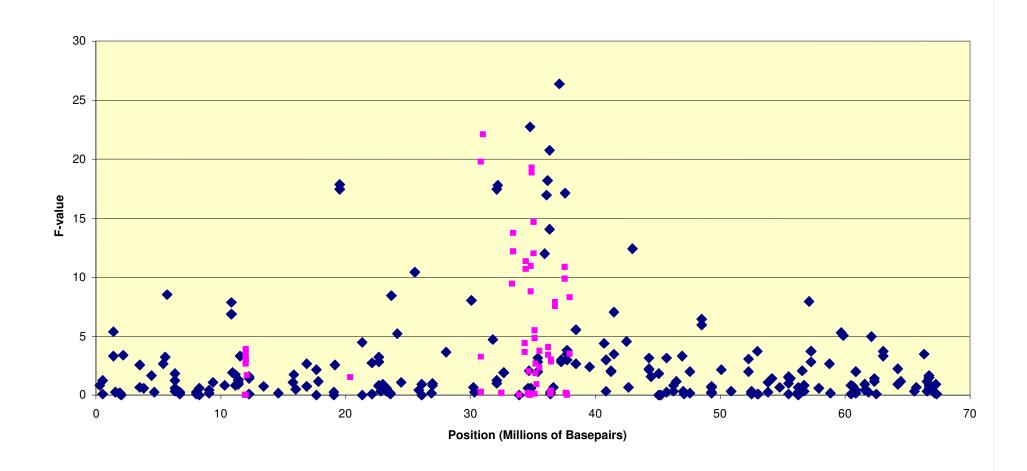
$$\mathbf{y} = \mathbf{1}_{\mathbf{n}} \mu + \mathbf{X}_{\mathbf{1}} g_1 + \mathbf{X}_{\mathbf{2}} g_2 + \mathbf{e}$$

 Use multiple regression to estimate vector of SNP effects with multiple markers

$$\begin{bmatrix} \hat{\mu} \\ \hat{g}_1 \\ \hat{g}_2 \\ \hat{u} \end{bmatrix} = \begin{bmatrix} 1_n'1_n & 1_n'X_1 & 1_n'X_2 & 1_n'Z \\ X_1'1_n & X_1'X_1 & X_1'X_2 & X_1'Z \\ X_2'1_n & X_2'X_1 & X_2'X_2 & X_2'Z \\ Z'1_n & Z'X_1 & Z'X_2 & Z'Z + A^{-1}\lambda \end{bmatrix}^{-1} \begin{bmatrix} 1_n'y \\ X_1'y \\ X_2'y \\ Z'y \end{bmatrix}$$

How many QTL to use in LD-MAS

- Use multiple regression to estimate vector of SNP effects with multiple markers
- Accounts for the fact that some SNPs may be picking up the same QTL



LD-MAS with single markers

Predict breeding values using marker information:

MEBV =
$$\hat{\mathbf{u}} + \mathbf{X}_{1} \hat{g}_{1} + \mathbf{X}_{2} \hat{g}_{2} + \dots$$

How many QTL to use in LD-MAS

 Use multiple regression to estimate vector of SNP effects with multiple markers (random?)

$$\begin{bmatrix} \hat{\mu} \\ g_1 \\ \hat{g}_2 \\ \hat{u} \end{bmatrix} = \begin{bmatrix} \mathbf{1}_{n}'\mathbf{1}_{n} & \mathbf{1}_{n}'\mathbf{X}_{1} & \mathbf{1}_{n}'\mathbf{X}_{2} & \mathbf{1}_{n}'\mathbf{Z} \\ \mathbf{X}_{1}'\mathbf{1}_{n} & \mathbf{X}_{1}'\mathbf{X}_{1} + \mathbf{I}\lambda_{1} & \mathbf{X}_{1}'\mathbf{X}_{2} & \mathbf{X}_{1}'\mathbf{Z} \\ \mathbf{X}_{2}'\mathbf{1}_{n} & \mathbf{X}_{2}'\mathbf{X}_{1} & \mathbf{X}_{2}'\mathbf{X}_{2} + \mathbf{I}\lambda_{2} & \mathbf{X}_{2}'\mathbf{Z} \\ \mathbf{Z}'\mathbf{1}_{n} & \mathbf{Z}'\mathbf{X}_{1} & \mathbf{Z}'\mathbf{X}_{2} & \mathbf{Z}'\mathbf{Z} + \mathbf{A}^{-1}\lambda \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1}_{n}'\mathbf{y} \\ \mathbf{X}_{1}'\mathbf{y} \\ \mathbf{X}_{2}'\mathbf{y} \\ \mathbf{Z}'\mathbf{y} \end{bmatrix}$$

 Use variance component estimation to get SNP effects

Marker Assisted Selection using LD

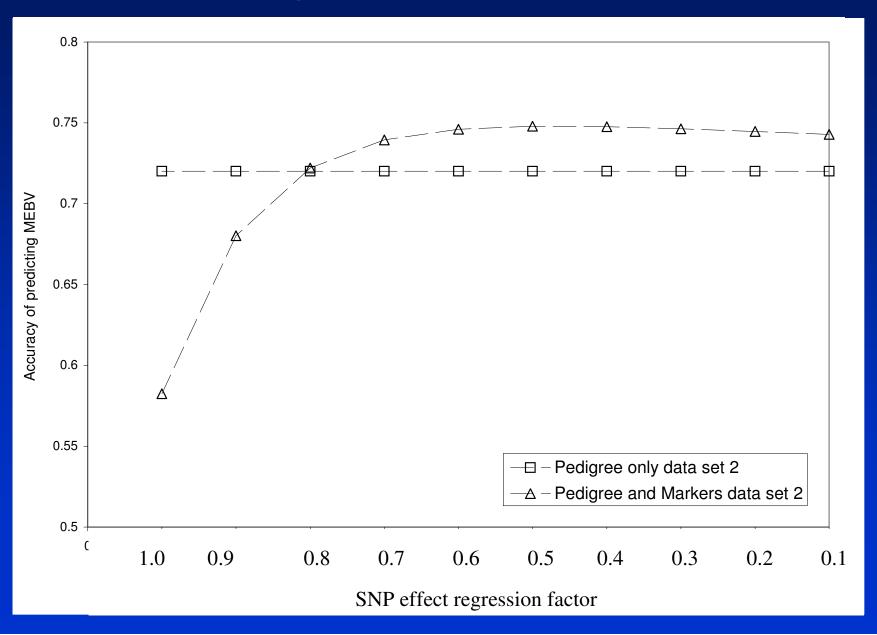
- LD-MAS with a single marker
- How many QTL to use in LD-MAS?
- Bias in QTL effects
- LD-MAS with marker haplotypes
- LD-MAS with the IBD approach
- Gene assisted selection
- Optimising the breeding scheme with marker information

• Strong tendency to overestimate QTL effects in a genome scan, as these effects can exceed significance thresholds if the estimate is larger than the actual effect due to a large positive error term

- Strong tendency to overestimate QTL effects in a genome scan, as these effects can exceed significance thresholds if the estimate is larger than the actual effect due to a large positive error term
- This over-estimation is more pronounced in genome scans of low power, positive error term must be large to overcome the significance threshold.

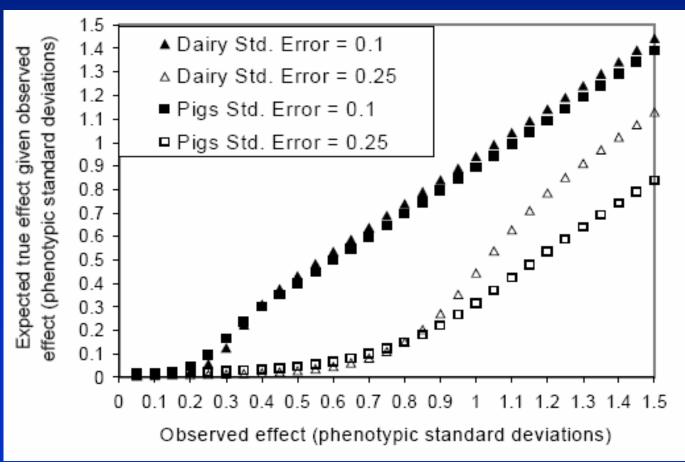
- Strong tendency to overestimate QTL effects in a genome scan, as these effects can exceed significance thresholds if the estimate is larger than the actual effect due to a large positive error term
- This over-estimation is more pronounced in genome scans of low power, positive error term must be large to overcome the significance threshold.
- If the QTL effect is over-estimated, the advantage of MAS can be eroded substantially (eg LD-MAS with a single marker)

- Strong tendency to overestimate QTL effects in a genome scan, as these effects can exceed significance thresholds if the estimate is larger than the actual effect due to a large positive error term
- This over-estimation is more pronounced in genome scans of low power, positive error term must be large to overcome the significance threshold.
- If the QTL effect is over-estimated, the advantage of MAS can be eroded substantially (eg LD-MAS with a single marker)
- Must regress QTL effects prior to use in MAS



- Options for estimating unbiased estimates of QTL effect
 - Best method is to estimate QTL effects in a population which is completely independent of the sample used in the original genome scan where the QTL were first detected.
 - This will also validate that the markers are not an artefact of the statistical model used in the genome scan or some unaccounted for population stratification.
 - But maybe too expensive
 - Use prior knowledge of distribution of QTL effects to regress effects
 - Cross validation

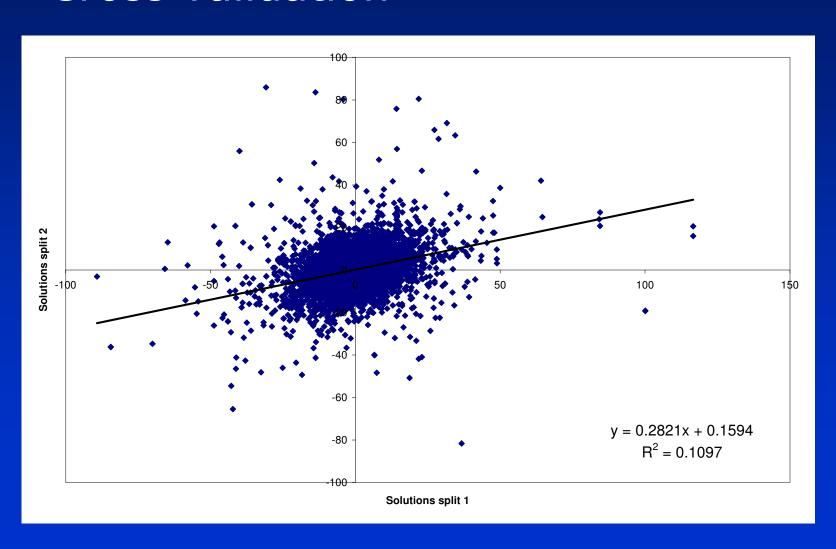
- Use prior knowledge of distribution of QTL effects to regress effects
- Then for a given size of experiment and estimated size of effect, we can calculate the true effect



- Use prior knowledge of distribution of QTL effects to regress effects
- Then for a given size of experiment and estimated size of effect, we can calculate the true effect
- See Weller et al. 2005 for distributions of QTL effects across traits

- Cross validation
 - split data set in two
 - regress solutions from data set two on data set one to get b_{x1x2}
 - then the regression of the true effects of the SNPs on the solutions from the full data set is
 - $\bullet b_{u,xt} = 2b_{x1x2}/(1+b_{x1x2})$

Cross validation



- Cross validation
 - split data set in two
 - regress solutions from data set two on data set one to get b_{x1x2}
 - then the regression of the true effects of the SNPs on the solutions from the full data set is
 - $\bullet b_{u,xt} = 2b_{x1x2}/(1+b_{x1x2})$
 - \bullet = 0.44

Marker Assisted Selection using LD

- LD-MAS with single markers
- How many QTL to use in LD-MAS?
- Bias in QTL effects
- LD-MAS with marker haplotypes
- LD-MAS with the IBD approach
- Gene assisted selection
- Optimising the breeding scheme with marker information

• Model:

$$\mathbf{MEBV} = \mathbf{u} + \mathbf{X}\mathbf{g}$$

• g is a vector of haplotype effects, eg.

Haplotype	Effect
1	0.2
2	-0.12
3	-0.11
4	0.21

- Accuracy of LD-MAS with haplotypes
 - Depends on
 - Proportion of QTL variance explained by haplotypes
 - Number of haplotype effects to estimate
 - Number of phenotypic records
 - Accuracy of inferring haplotypes

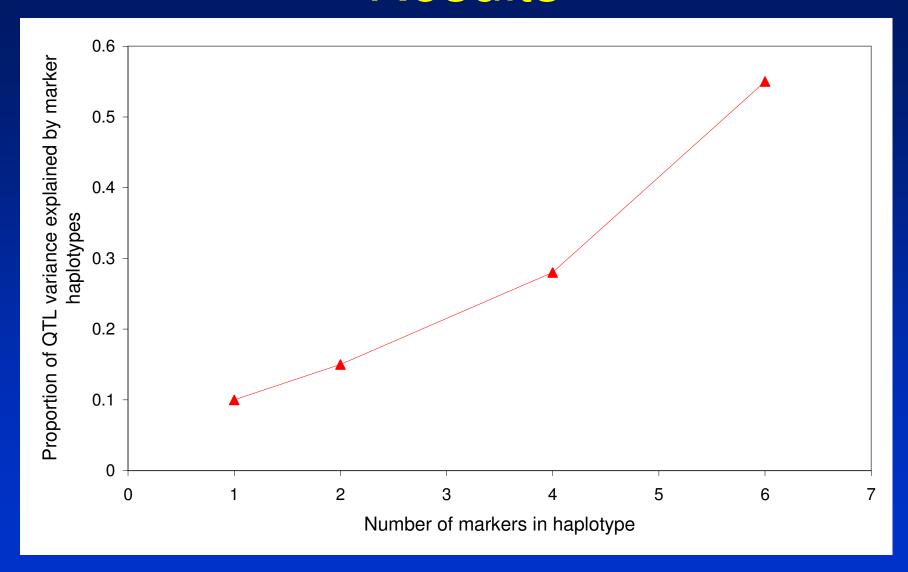
- Accuracy of LD-MAS with haplotypes
 - Depends on
 - Proportion of QTL variance explained by haplotypes
 - Number of haplotype effects to estimate
 - Number of phenotypic records
 - Accuracy of inferring haplotypes

- Accuracy of LD-MAS with haplotypes
 - Depends on
 - Proportion of QTL variance explained by haplotypes

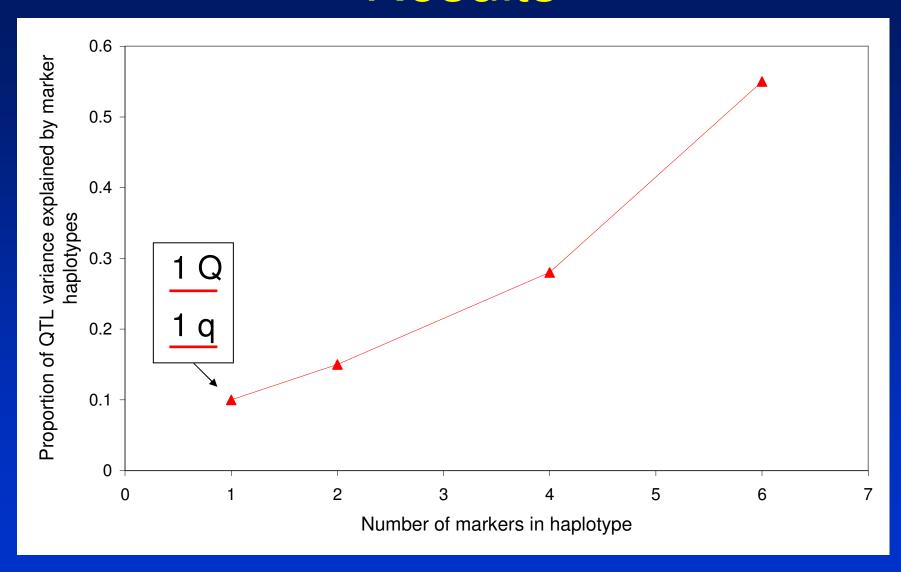
$$r^{2}(h,q) = \sum_{i=1}^{n} \frac{D_{i}^{2}}{p_{i}} / q_{1}q_{2}$$

- Example:
- 10 000 SNPs genotyped in 379 Angus animals
- Select a SNP from the 10 000 at random to be a "QTL"
 - determine
 - Nearest marker
 - 2, 4 or 6 marker haplotypes
 - Haplotypes estimated using PHASE program (Stephens et al. 2001)
 - This takes into account LD structure in the cattle populations
- Calculate the proportion of QTL variance explained by the marker haplotypes.

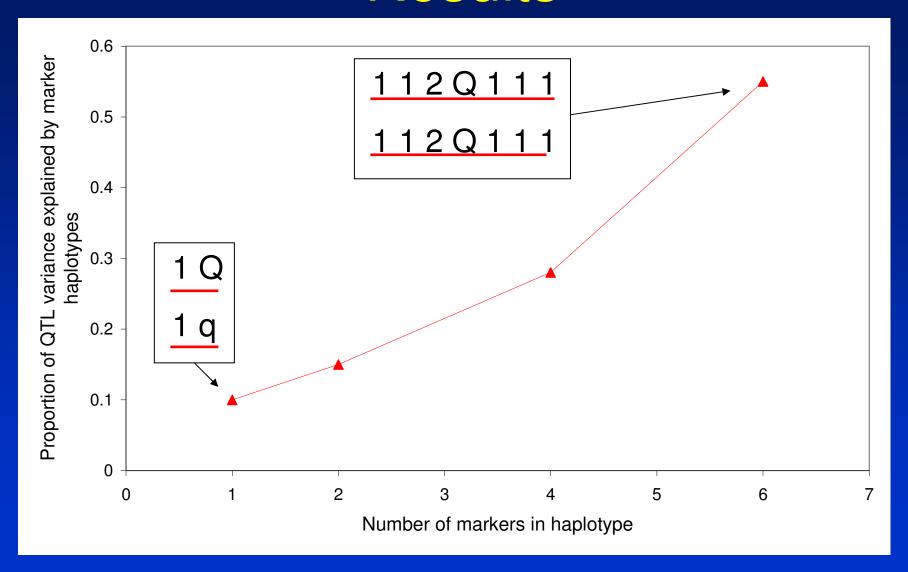
Results



Results



Results



• Example:

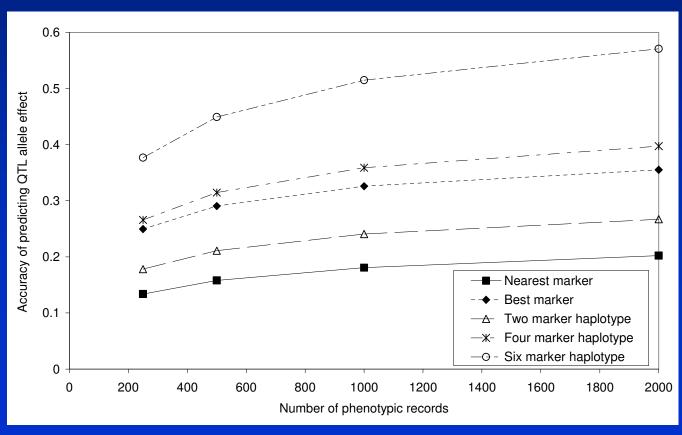
number of
hanlatunas
haplotypes
2
2
3.4
9.4
20.8

 Accuracy of estimating QTL allele effects from haplotypes:

$$r(q, \hat{h}) = \sqrt{r(h, q)^{2} \sum_{i=1}^{n} \frac{p_{i}^{2}}{p_{i} + \lambda/T}}$$

$$\lambda = \sigma_e^2 / \sigma_h^2$$

 Accuracy of estimating QTL allele effects from haplotypes:



- Accuracy of LD-MAS with haplotypes
 - Depends on
 - Proportion of QTL variance explained by haplotypes
 - Number of haplotype effects to estimate
 - Number of phenotypic records
 - Accuracy of inferring haplotypes??

Marker Assisted Selection using LD

- LD-MAS with single markers
- How many QTL to use in LD-MAS?
- Bias in QTL effects
- LD-MAS with marker haplotypes
- LD-MAS with the IBD approach
- Gene assisted selection
- Optimising the breeding scheme with marker information

LD-MAS with the IBD approach

• MEBVs:

$$\mathbf{MEBV} = \mathbf{u} + \mathbf{v}$$

LD-MAS with the IBD approach

MEBVs:

$$\mathbf{MEBV} = \mathbf{u} + \mathbf{v}$$

$$\begin{bmatrix} \hat{\mu} \\ \hat{\mathbf{u}} \\ \hat{\mathbf{g}} \end{bmatrix} = \begin{bmatrix} \mathbf{1_n'1_n} & \mathbf{1_n'Z} & \mathbf{1_n'W} \\ \mathbf{Z'1_n} & \mathbf{Z'Z + A^{-1}\lambda_1} & \mathbf{Z'W} \\ \mathbf{W'1_n} & \mathbf{W'Z} & \mathbf{W'W + G^{-1}} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1_n'y} \\ \mathbf{Z'y} \\ \mathbf{W'y} \end{bmatrix}$$

 Where W is a matrix allocating records to QTL allele effects

LD-MAS with the IBD approach

- Has the potential to be most accurate method for LD-MAS because can capture linkage information as well
 - Particularly with sub-optimal markers densities

Marker Assisted Selection using LD

- LD-MAS with single markers
- How many QTL to use in LD-MAS?
- Bias in QTL effects
- LD-MAS with marker haplotypes
- LD-MAS with the IBD approach
- Gene assisted selection
- Optimising the breeding scheme with marker information

Gene Assisted Selection

- Greatest increases in response (not limited by LD)
- Simplest, cheapest to implement in breeding program
 - No need to establish phase within families
 - Cost of discovery very high
 - Number of examples now (Dekkers 2004)
 - May become apparent that mode of inheritance is not additive
 - Eg. IGF2 mutation in pigs is imprinted (only expressed if mutated allele from father)

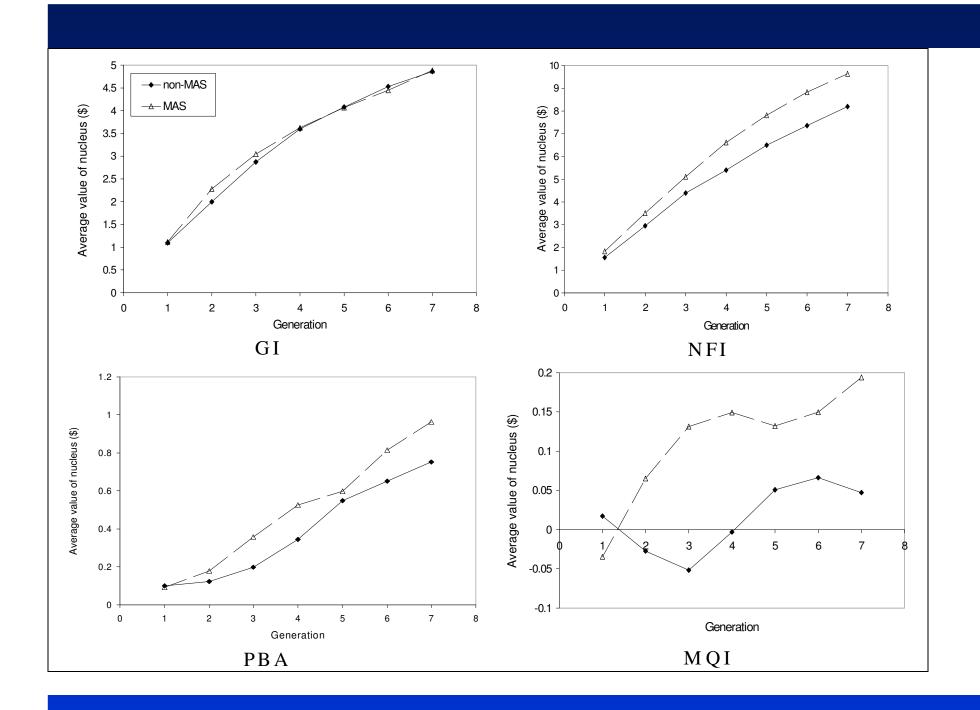
Marker Assisted Selection using LD

- LD-MAS with single markers
- How many QTL to use in LD-MAS?
- Bias in QTL effects
- LD-MAS with marker haplotypes
- LD-MAS with the IBD approach
- Gene assisted selection
- Optimising the breeding scheme with marker information

- Which traits
- Age at selection?

- Expected response from MAS
 - Traits measured on both sexes before selection << traits measured on one sex before selection << traits measured after selection
 - << traits measured on relatives</p>

Traits measured before selection	Traits measured on one sex before selection	Traits measured after selection	Traits measured on relatives
Growth Fatness	Feed intake Milk production	Pigs born alive Fertility	Carcass quality Disease resistance (fish)
		Disease resistance (cattle)	



- Which traits
- Age at selection
 - $-G=ir\sigma_g/L$
 - where G = genetic gain
 - i is the intensity of selection
 - r is the accuracy of selection
 - ullet σ_g is the genetic standard deviation and
 - L is the generation length

- Age at selection
 - We have already discussed improving r
 - What about L?
- Accuracy of traditional EBVs increase as animal ages and it and its relatives acquire phenotypic data.
- But animals can be typed for markers at any age
- Gain in accuracy from markers greatest at young age.
- So if selection optimised, marker data should lead to a decrease in generation length
- Eg. in dairy cattle selected for milk production, MAS leads to greater gains if selection of yearling bulls and cows is practiced than if a traditional progeny testing system is adhered to
- Reproductive technologies?

Take home points

- Markers in LD with QTL relatively easy to use in breeding programs
- Using haplotypes may improve accuracy?
- IBD approach allows linkage information to be used as well
- Response: Traits measured on both sexes before selection << traits measured on one sex before selection << traits measured after selection << traits measured on relatives
- Optimal use of marker information with selection at younger ages