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Chapter 12

The Numerator Relationship Matrix (A)
Julius van der Werf

Additive relationships are ameasure of the proportion of genes, which are identica by descent, which
are expected to be shared by two animas. Sewal Wright (1921) was responsible for the idea of tracing
paths to establish the relationships among animals, though Maecot (1948) is given credit for the
definition of relationships based on probabilities of individua genes at alocus being identica by descent.

The NRM is needed to account for the additive genetic covariances between records of related
animds. In gpplications for breeding vaue estimation, use of the relationships matrix implies that
information of related individuas will be used.

Accounting for genetic relationships adso has proven to be very useful to account for sdlection. It
is able to account for changes of means and variance &fter selection. The theory of deriving the
relationships matrix can aso be used for computing inbreeding coefficients for members of a population.
This makes sense when we redlize that inbreeding is computed from the additive genetic reaionship
between parents. The matrix is therefore essentid for gppropriate eva uation with data on complex
pedigrees (more than one generation). Furthermore, the NRM can be used to optimize short-term
selection decisons and predictions of response and inbreeding, Snce it can adso in this respect give an
account of the relationships among the current selection candidates. Understanding the structure of the
relationships matrix helps in understanding genetic properties of the anima modd.

The numerator relationships are equal to twice the coancestry, and they express the proportion of
additive genetic variance that two individuas have in common. Ignoring epidtatic effects and letting a
equal the fraction of additive genetic variance, and d that of dominance variance, the generadized
covariance for any sort of reationship is (Falconer, 1981):

Cov=aVv, +dV,

For the covariance between P and Q (with parents A,B and C,D respectively), valuesfor a and d are
given by:
ap, = 2f
" : " wheref is the coancestry
dPQ _fACfBD + fADfBC

but we Il ignore d (dominance) hereafter

The coefficients of coancestry of two individuds reflects the probability that two gametes taken at
random, one from each, carry dldesthat are identical by descent (= inbreeding coefficient of their
progeny should they be mated together).

Furthermore, a the diagonals, the NRM contains the coefficient of inbreeding. That is the probability
that two genes at any locusin an individud are identica by descent.

The following equivadencies hold (see ds0 page 4.3):

a; =(1+F) = 2f;

a; = O'S(a'i,sireofj’ai,damofj) = 2fij foritj
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F =05a,= f
The additive relationship (&;) is used as amessure of the covariance of breeding values between
relatives. Wright's coefficient of rdaionship (R) is equivaent to the correlation between breeding values
of two animas. For non-inbred animals these two measures are identical. Ris given by:

Ri =& /aiqy
=g /,J1+F)1+F)

Elementsof A are the numerator of Wright's coefficient of relationship!

The condruction of the relationships matrix
Systematic recurrent rules that are based on the flow of genes from generation to generation with
individud animds being specified.
- Path coefficient method

suitable for small pedigrees with few generations and little inbreeding
- Genomic table of probabilities

isuseful if dominance genetic effects are to be included in the animal model
- Recursvely using the tabular method.

where the pedigreeis large and/or complicated, and/or where high levels of inbreeding are evident

For very large pedigrees it may be impossible to caculate A a dl!

The dgorithm to compute A using the tabular method is easy to implement. However, with alarge

number of animals, A may adso be large and time consuming to compute (depending on the efficiency of
your agorithm). Further, large A excludes direct inversion of A to obtain A™*(needed for the MME) as
afeasible option. Henderson (1976) developed a set of rules by which A™*can be buiilt directly. Quaas

(1976) has generdized these rules for large pedigrees and inbreeding. These findings contributed to
routine use of A in anima breeding applications.

Thetabular method
Step 1: Order pedigree list chronologically so that parents precede offspring. Base parents are considered
unrelated and non-inbred.
Step 2: Working one row at a time, compute elements of A using the following relationships: For individuals
i orj, elements of A are:
a; =(1+F)

q; :0-5(311'"31]") for it j
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F = 05a,

where F; isthe inbreeding coefficient of anima i, j’ = sireof j andj’’ = damof j, andsand d refer to
sire and dam. By knowing previous relationships, it is possible to calculate future relationships (given no
missing information). The inbreeding coefficients (F) for base animals are zero. The following recursive
function would calculate the additive genetic relationship between al animas.

RECURSIVE function xnumrelmat(i,j) RESULT (vaue)
INTEGER PED
common PED(10000,2)
if(i.eq.0 .or. j.eq.0) then
vaue=0.0
return
endif
IF(i.eq.j)then
vaue=1+.5*xnumrelmat(PED(i,1),PED(i,2))
elsel F(i.lt.j)then
vaue=5* (xnumremat(PED(j,1),i) + xnumrelmat(PED(j,2),i))
elselF(j.It.i)then
value=.5* (xnumrelmat(ped(i,1),j) + xnumrelmat(ped(i,2),j))
endif
end fu nction xnumrel mat

Construction of theinverse of the relationships matrix

Consder the case that u is a vector with additive genetic vaues (breeding values) of animasin a
population. The variance of u can be given asvar(u) = As%, where A isthe netrix with additive genetic
relationships between animas and s, isthe additive genetic variance. Now let us order the animasin
u according to age, such that the oldest animals are first. A breeding vaue of an anima from which both
parents are known in u can be written as y, = .5us + .5uy + ms, where u,, us and uy are breeding vaues
of progeny, sre and dam, and msisapart of the breeding vaue due to Menddian sampling (within full-
gb family variance).
We can define now amatrix P represents the transmission of genes. The vector of breeding values can
be written as

u=Pu+f

This can easest beillugtrated by dividing vector u into two parts, one being a part with breeding vaues
of 'base’ parents, which we define here as animas that have unknown pedigree, and the other part
referring to animas that have both parents known. For smplicity we assume there are no animas with
one parent known, but this could aso be implemented. The vector of breeding vaues can be written as

aﬂb9:$0 O@'bg a@lbg
gup;; gPZI Pzzéupa-l_gf P

where P, refersto the flow from base animasin u, to progeny in u, and Py, refersto the passing of
genesto progeny from parents that are aso progeny themsalves. Each row of P has therefore at most
two nonzero eements: a.5 for each parent.
We can rewrite (X) as

(I-Pyu=f
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u=(-P)f

The vector with breeding vaues u is now presented as a linear function of independent genetic vaues,
which arein vector f . Thisvector contains breeding values for base animas and Menddian sampling
vaues for offspring with two parents known. The additive genetic variance can be written as

va(u=A= (I-P*var(f)(-P)* = (I-P)* D (I-P)*=TDT

The matrix D isadiagond matrix. [If thereisno inbreeding, then the values for each diagond d are
di=1if no parents are known,
di=.75if one of the parentsis known
di= .5 if both parents are known.

With d; referring to the variance (proportional to s 2) that has not been explained by known parents.

We will first derive rules for A™ because these rules are easiest and most often used in genetic
evadudions Theinverse of the relationships matrix is

A'= [TDT']*=(I-P)D*(-P)

Pisamatrix with at most two elements of 0.5 in each row, one in the column for each parent, assuming
there are no animals that have grandparents known but not their parents. This Smple structure provides
aso smplerulesto congruct A*

The matrix (1-P) islower triangular with dl diagonds equa to 1 and, if parents are known, for each row
only two parent-progeny off-diagonals equa to—0.5. Multiplication of (I-P) and (I-P) givesa
symmetric matrix. Itiscondructed as. (I-P)(I-P)=1 - (P+P) + P*P.

Thisresultsis an identity matrix with a—0.5 on each known parent- progeny off-diagona (created by
subtraction of (P +P), and avaue of 0.25 added to each parenta diagonal as well asthe off diagona
between 2 mates. In the A-inverse, these values are weighted by the diagona matrix D™

The matrix D™ contains diagonas being (with no inbreeding) 1, 4/3, and 2 for animals with none, one,
and two parents known, respectively.

The rules for congtructing A™ for this non-inbreeding case are then based on the following table
(wherethei, j and k refer to row and column numbers of an animd, its Sre and its dam)

pedigree knowledge: element added to value

no parents known

(1,0,0) animals' diagonal ] 1.0

one parent known

(i,j,0) or (i,0k) animals' diagonal i, 1.0* 4/3
parent-offspring off-diagonal ijandj,i

orik and ki -0.5* 4/3

parents’ diagonal jj orkk 0.25* 4/3

two parents known

(@i,j,k) animals’ diagonal i,i 10* 2
parent-offspring off-diagonal ij; j.0; i kandkii -0.5* 2
parents’ diagonal jj andk,k 0.25* 2
mates off-diagonal j.kandk,j 025* 2
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The P matrix has another nice property P identifiesin each row i the parents of i, P identifiesin each
row of i the grandparents of i, etc.

Therefore, P* containsin each row 4 nonzero eements, each equa to 0.25 When this does not hold,
some grandparents have to be missing from the pedigree, or there has been inbreeding (e.g. when there
are only three elements, and one of the dementsis 0.5, then that grandparent has been used twice in the
pedigree of the same animdl). Note that the sum of each row of Pisequd 0, 0.5 or 1 for none, one or
two parents known.

In generd P identifies ancestors back to t generations, hence P* identifies great grand parents etc. If Pt=
0, than the first ancestors date back to lessthan t generations.

Pedigree
1 0 0
2 0 0
3 0 0
4 0 0
5 1 0
6 3 4
7 5 6
P = 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0.5 0 0 0 0 0 0
0 0 05 0.5 0 0 0
0 0 0 0 0.5 0.5 0
(I-P) = 1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
-0.5 0 0 0 1 0 0
0 0 -0.5 -0.5 0 1 0
0 0 0 0 -0.5 -0.5 1
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Building the NRM while accounting for inbreeding

If thereisinbreeding, thereis only one eement of the previous derivation that changes, which is the
diagond D matrix. The diagond represents the variance due to Menddian sampling within family. The
within family varianceisequal to s 2 with no inbreeding, but this variance is

smdler if the parents are inbred. In practice, it becomes much more difficult to derive the appropriate
coefficients of A when there isinbreeding, because to know the inbreeding, one should know the
additive genetic relationship between parents. In the previous section we only derived smple rulesfor
the inverse of A. Obtaining coefficients A for two individuds (e.g. two parents), which is more difficult.
When an animd isinbred, it has an inbreeding coefficient F with K= Y2a where ayis equd to the
additive genetic relationship between sre and dam. The variance of a breeding vaue of such an animd is
then var(u)= (1+F)s 2 = Yavar(u)+ Yavar(us)+ ¥2 cov(us,ug)+ var(f )

30 that the within family variance is equd to

va(f )= (1+F)s 2 - Y41+F)s 2 - Ya(1+Fy)s 2 - Fis 2 = Y(1-YyFstFa)s 2

Hence, the within family variance is not reduced if the parents are rlated (and the full sbs are inbred),
but only when the parents are inbred. The variance of an inbred animd is (1+F) and therefore the i
diagond of the relationships matrix is 1+F.

The diagonal for D becomes d= 1-0.25a - 0.25a4¢ = YA(1-YAFs+Fy))
Andif only one parent known: di; = 1-0.25g; = 3/4-0.25F;

Hence, to determine rules for A accounting for inbreeding, the diagona eements of A have to be
changed compared to the Stuation without inbreeding. It isalot of work to determine A for large
populations, but Quaas (1976) has given some rules to determine the diagonds of A efficiently, so that
inbreeding coefficients and elements of A™ with account for inbreeding can be derived from this.

We use again the structure of the relationships matrix and write

A=TDT =LL’

where L = TD®® isalower triangular matrix.

T=(I-P)* isdsolower triangular and it describes the flow of genes through the population. The
T(i,)) dlement of T indicates the fraction of the genesthat animd i has received from animd |.
Diagondsof T are 1 and off-diagonals are nonzero between animals and their ancestors. equd to 0.5,
where n isthe number of generations between anima and ancestor.

This can be best seen in anumerica example.
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Pedigree with inbreeding (animal, sire, dam)

1 0 0
2 0 0
3 1 0
4 1 2
5 3 2
6 3 5
7 3 6
T=(-P)"
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0.5 0 1 0 0 0 0
0.5 0.5 0 1 0 0 0
0.25 0.5 0.5 0 1 0 0
0.375 0.25 0.75 0 0.5 1 0
0.4375 0.125 0.875 0 0.25 0.5 1
D=
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0.75 0 0 0 0
0 0 0 0.5 0 0 0
0 0 0 0 0.5 0 0
0 0 0 0 0 0.5 0
0 0 0 0 0 0 0.4375
L=TD"
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0.5 0 0.866 0 0 0 0
0.5 0.5 0 0.7071 0 0 0
0.25 0.5 0.433 0 0.7071 0 0
0.375 0.25 0.6495 0 0.3536  0.7071 0
0.4375 0.125 0.7578 0 0.1768  0.3536 _ 0.6614
A=T*D*T' = LL’
1 0 0.5 0.5 0.25 0.375 0.43
0 1 0 0.5 0.5 0.25 0.125
0.5 0 1 0.25 0.5 0.75 0.875
0.5 0.5 0.25 1 0.375 0.3125 0.281
0.25 0.5 0.5 0.375 1 0.75 0.625
0.375 0.25 0.75 0.3125 0.75 1.25 1
0.4375 0.125 0.875 0.2813 0.625 1 1.375

An dgorithm to determine inbreeding coefficientsfor large pedigrees can be based on this principle
(Quaas, 1976). Later, dgorithms have been described, e.g. by Meuwissen and Luo (1992) as
described in the book by Mrode (1996)
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Quaasalgorithm

The (i,j) element of A isnow obtained as the multiplication of thei row of L™* with the " row of L"* The inbreeding
coefficient of an animal can be computed as Fi= 0.5a,,= where sand d are therowsin L of the sire and the dam. We
do not have to store all rows of L to compute inbreeding coefficients, which would require alot of memory space for
large populations. Quaas (1976) has shown that the triangular structure of L can be efficiently exploited to calculate F
efficiently. Therefore, each column of L will be computed and only one column at atime will be kept in memory (say in
array V). The squared elements will be accumulated in another array (say array U) and working from columns 1 to N
(N=number of animals), the accumulationsin U will contain the sum of the squared elements for each row. Therefore,
U contains after completion the diagonal elements of the relationship matrix A and the inbreeding coefficient for
animal i isthen

Thei-th column of L can be made for each animal, and the sum of the squared elements can be accumulated giving
each timethat li isformed, the complete pedigreelist hasto be read, which is most of the work of this method. Even if
anew generation of progeny is added to the pedigree list, we have to read also the old list of pedigreeto create the
columns of L for the new animals.

After theinbreeding coefficients have been determined, the elements of D can be computed as di- =1/ [1-(1+Fs)-
(1+Fd)]. We use then the rules of [1-5] to create the elements of the A matrix.

Thealgorithm to determine inbreeding coefficients the routine builds a columnof L-matrix, the routine runsfor an
animal acolumnin array v and accumulates the sum of squared elementsin array U= diagonals of A

IN=total number of animals

DO 10I1=1,N ! for each animal
s=sireof i

d=damofi

IF sNEOandd NEOTHEN

XX=1-0.25*U(s)}0.25* U(d))
IFSNEOandd=0THEN
XX=(1-0.25*U(s))
IFs=0and d NEO THEN
XX=(1-0.25*U(d))
IFs=0andd=0THEN
XX=1

END IF

V()=sgrt(XX) 'V iscolumn of L matrix
U(l)= U(l)+ XX*XX U accumulates
DO2XI+1, N

s=sireof J

then other off diagonals
d=damofJ
IFsGElandd GE | THEN
XX= 5*(V(9+V(d)
IFSGElandd LTI THEN
XX=.5*V(s)

IFSLTlandd GE| THEN
XX= 5*V(d)
IFSLTlanddLT | Then
XX=0

END IF

V(J=XX

U(J)= U+ XX*XX

2 CONTINUE

10 CONTINUE
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Exercise

= From following data st (Table 1), set up matrix A, and invert it. Congtruct aMME and solveit to
estimate sex effect (asfixed) and predict the random effect of each anima (breeding vaue). You
may have to draw a diagram of the pedigree to identify base animas and animasinbred, that helps
you work out the Matrix A.
For working out A, work aso out the matrices P, D and T and L asin the steps above.

= Find the base population and calculate the average breeding vaue for the base population.

Table 1 Yearling weight in Herefords

animd gre dam sex YWT(kg)
1 0 0 M -
2 0 0 F -
3 0 0 M -
4 0 0 F -
5 0 0 M -
6 1 2 M 400
7 3 4 F 300
8 5 4 M 312
9 6 7 M 405
10 8 7 F 298
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