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Chapter 2 

An introduction to matrix algebra and regression.      
 

Julius van der Werf 

Brian Kinghorn 

University of New England, Armidale, Australia 

 

Matrices take a lot of the tedium out of both presenting algebra and calculating results.  They 

are widely used in scientific animal breeding, particularly in selection indices and BLUP. 

 

A matrix is a rectangular array with dimensions Rows x Columns. 

 
For example: 

 

A =  







4 6

7 3

2 1

    is a 3 (rows) x 2 (columns) matrix.  Element a
ij
  has value 6.  Note the 

convention of using a small letter for elements, 

and subscripts denoting row and column, in that 

order. 

B =  







4

7

9

   and   C =  ( )8 3 14  are matrices which can be referred to as vectors.  

B is a column vector and C is a row vector, both 

of length 3. 
 
Matrices of equal dimensions can be added and subtracted 
 

Weaning weight, Kg Blue Angus Leanford Meatmaker 

High Nutrition 120 140 150 

Low Nutrition 90 100 105 

 

 

Yearling weight, Kg Blue Angus Leanford Meatmaker 

High Nutrition 260 290 320 

Low Nutrition 220 250 275 

 

These hypothetical data can be represented in Nutrition x Breed matrices.  Note the special 

meaning that element locations have - they indicate breed and nutrition: 

 

W =  






120 140 150

90 100 105
 Y =  







260 290 320

220 250 275
  G =  







140 150 170

130 150 170
 

 

Note that the matrix of Growth (Y - W = G)  is of the same dimension as the others, and is 

simply got by subtracting elements of W from corresponding elements of Y 
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Matrices can be multiplied by a scalar - a simple constant: 

 

 For example, to express G in Lbs rather that KG, multiply by 2.2: 

 

 GLbs =  2.2 






140 150 170

130 150 170
  =  







308 330 374

286 330 374
 

 

Matrix multiplication: 
 

In this hypothetical example we have information to make two matrices: 

 

  M: a matrix of merit for breeds (X, Y and Z) by traits (Body weight and backfat). 

  P: a matrix of dollars per unit for traits (Body weight and Backfat) by markets (Domestic 

and Export). 
 

 And the product of these matrices will be: 
  R: a matrix of dollars per head for Breeds (X, Y and Z) by markets (Domestic and 

Export). 

 
  M    P    R 

     MERIT MATRIX     x        PRICE MATRIX      =    RETURNS MATRIX 

 

            Wt.    Fat   Dom.  Exp.               Dom.  Exp. 

Breed X

Breed Y

Breed Z

    







300 11

280 5

320 15

 
Wt.

Fat
     







3 4

-20 -50
              

Breed X

Breed Y

Breed Z

    







680 650

740 870

660 530 

 

 Breeds x Traits     x     Traits x Markets    =         Breeds  x Markets 

   

First note that the number of columns of M (= traits, 2) must equal the number of rows of P 

(also traits, 2) in order to be able to multiply.  The following shows calculation of r3,2 

 

 

 

 

300     11

280      5

320     15

x

320

15

x

x

=

=

320

15

1280

-750

 530

=
530

   3             4

-20          -50
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Matrix multiplication: Here is the same information in words: 

 

 

 

To calculate the elements of R: 

 

The (i,j)th  (row, column) of R is the sum of the products of 

the elements of the ith row of M and the jth column of P 

 

For example, r3,2: R3,2  =    m3,1 x p1,2     +      m3,2 x p2,2 

 

 530  =      320 x    4       +        15  x  -50  

 
Another example: 

5 3 5 7 3 3 44
7

4 2 4 7 2 3 34
3

1 5 1 7 5 3 22

x x

x x

x x

     
      

        
           

 

 
For matrix multiplication to be legal, the first matrix must have as many columns as the 

second matrix has rows. This, of course, is also the requirement for multiplying a row vector 

by a column vector. The resulting matrix will have as many rows as the first matrix and 

as many columns as the second matrix. Because A has 2 rows and 3 columns while B has 

3 rows and 2 columns, the matrix multiplication may legally proceed and the resulting 

matrix will have 2 rows and 2 columns. 

 

   Matrix A   x  Matrix B 

 

  
Because of these requirements, matrix multiplication is usually not commutative. 

That is, usually AB BA. And even if AB is a legal operation, there is no guarantee that 

BA will also be legal. For these reasons, the terms premultiply and postmultiply are often 

encountered in matrix algebra while they are seldom encountered in scalar algebra. 

 

Whenever you propose matrix multiplications, make sure they ‘fit’ 

One special case to be aware of is when a column vector is postmultiplied by a row 

vector. In this case, one simply follows the rules given above for the multiplication of two 

Nr. of Rows of A  x  Nr. of Col’s of Nr. of Rows of B x  Nr. of Col’s of B  

    These have to match 

Nr. of Rows of A  x  Nr. of Col’s of B  

Dimension of resulting matrix  
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matrices. Note that the first matrix has one column and the second matrix has one row, 

so the matrix multiplication is legal. The resulting matrix will have as many rows as the 

first matrix (3) and as many columns as the second matrix (2).  

 

 

3 9 12

2 3 4 6 8

5 15 20

   
   

   
   
   

 

 

 

Similarly, multiplication of a matrix times a vector (or a vector times a matrix) will also 

conform to the multiplication of two matrices. For example, 

9 12 3

6 8 5

15 20 2

  
  
  
  
  



is an illegal operation because the number of columns in the first matrix (2) does not 

match the number of rows in the second matrix (3).   

 
There are a couple of identities worth noting: 

 Matrix multiplication is not commutative: AB ≠ BA. 

 Matrix multiplication is associative. In other words: (AB)C = A(BC) 

 Matrix multiplication is distributive. In other words:  A(B + C) = AB + AC 

 Scalar multiplication commutative, associative, and distributive. 

 
There are a couple of examples that are worth looking let. Let us define the column 

vector e. By definition, the order of e is (N, 1). We can take the inner product of e, which 

is simply: 

 

1

2

1 2' [ ]N

N

e

e
e e e e e

e

 
 
 
 
 
 

 = e1e1 + e2e2 + · · · + eNeN  = 2

1

N

i

i

e


  

 

The inner product of a column vector with itself is simply equal to the sum of the square values 

of the vector, which is used quite often in the regression model. Geometrically, 

the square root of the inner product is the length of the vector. One can similarly define the 

outer product for column vector e, denoted ee’ which yields an order (N,N) matrix. 

There are couple of other vector products that are interesting to note. Let i denote an 

order (N, 1) vector of ones, and x denote an order (N, 1) vector of data. The following is an 

interesting quantity: 

1

1

1 1 1
' ( , , )

n

n i

i

i x x x x x
N N N 

    is the mean of all xi 

 

From this, it follows that:   i’x = 
1

n

i

i

x


  is the sum of all xi 

  
Similarly, let y denote another (N, 1) vector of data. The following is also interesting: 
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 x’y = x1 y1 + x2 y2 + · · · + xN yN = 
1

n

i i

i

x y


  is the crossproduct of all xiyi 

 

The identity matrix, I. 
 

The number 1 is quite special, in that if you multiple any number by 1 that number retains its 

identity - it is not changed. 

 

The same property holds for the identity matrix , which is a square matrix.  There is not just 

one identity matrix, but one for each size, populated with zeros, except for the 'leading 

diagonal' (top left to bottom right) which contains one's. 

 

You can check that the following are in fact true: 

 

 IA = A  






1 0

0 1
      x     







4 6 7

3 2 1
    =   







4 6 7

3 2 1
  

 

         2x2     2x3       2x3 

 

 AI = A   






4 6 7

3 2 1
   x  







1 0 0

0 1 0

0 0 1

  =   






4 6 7

3 2 1
  

 

          2x3         3x3       2x3 

 

Note, that a scalar multiplied by an identity matrix becomes a diagonal matrix with the scalars 

on the diagonal.  

 

Diagonal matrix 
 
A diagonal matrix has only non-zero elements on its diagonal, 

For example 

2.45 0 0

0 1.71 0

0 0 1.69

 
 
 
 
 
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Transpose - pivot the matrix about the top left element 

 

 b = 






  x  

 y 
   gives   b' = ( )  x    y   "b transpose" 

 

The transpose of a matrix is denoted by a prime ( A'  or a superscript t or T ( At or 

AT ). 

 

         ' 

 







4 6

7 3

2 1

     =      






4 7 2

6 3 1
  Note that a'i,j  =  aj,i 

 

The transpose of a product takes an interesting form: (AB)’ = B’A’ 

 

Symmetrical matrix 
A matrix is symmetrical if A = A’. 

A symmetrical matrix has to be also a squared matrix (equal numbers of rows and columns) 

 

Matrix inversion 
 
Scalar:   X

-1
 = 

1
/x       

Only square matrices can be inverted.  We do this in order to achieve matrix division – we 

just multiply by the reciprocal, or inverse!  Just as  20/5 = 4, we have 20 x 5-1 = 4  

The inverse of a matrix is denoted by the superscript “-1” 

 

Inverse of a 2 x 2  Matrix:   
  a    b  

c d

-1









    =   

1

ad -  bc
  

  d  - b

- c   a  









  

 
For matrices larger that 2 x 2, inversion is quite tedious, and best left to a computer! 

 
Exercise:  Just as  X  .

1
/x  = 1  show that for matrices, X X

-1 
=  I, the identity matrix. 

 
In scalar algebra, the inverse of a number is that number which, when multiplied 

by the original number, gives a product of 1. Hence, the inverse of x is simple 1/x. or, in 

slightly different notation, x-1 In matrix algebra, the inverse of a matrix is that matrix 

which, when multiplied by the original matrix, gives an identity matrix. Hence, 

AA-1 A-1A I 

A matrix must be square to have an inverse, but not all square matrices have an 

inverse. In some cases, the inverse does not exist, that is, when the determinant equals zero 

(see below).  

For covariance and correlation matrices, an inverse will always exist, provided that there are 

more subjects than there are variables and that every variable has a variance greater than 0. 
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Determinant of a Matrix: 

The determinant of a matrix is a scalar and is denoted as |A| or det(A). The determinant 

has very important mathematical properties, but it is very difficult to provide a 

substantive definition. For covariance and correlation matrices, the determinant is a 

number that is sometimes used to express the “generalized variance” of the matrix. That 

is, covariance matrices with small determinants denote variables that are redundant or 

highly correlated. Matrices with large determinants denote variables that are independent 

of one another. The determinant has several very important properties for some 

multivariate stats (e.g., change in R2
 in multiple regression can be expressed as a ratio of 

determinants.) The determinant is tedious to obtain, using similar calculations as those used for 

calculating an inverse.   

 

Determinant of a 2 x 2  Matrix: 
  a    b  

 
c d

 
 
 

   =   
1

  
ad - bc

 

 

In linear models we use often ‘incidence matrices’ and these can have redundancies if different 

effects together explain the same thing. In that case, coefficient matrices that are formed can 

not be inverted because the determinant is equal to zero. We call such redundant matrices 

‘singular’ 

 

Matrix singularity and matrix rank 
 
Matrices are often used to defined and solve a set of equations (see next section). A set of 

equations can only be solved if the number of equations is more or equal to the number of 

parameters to solve for. An important condition is that these equations need to be non-

redundant or independent. For example, if we have 2x + 3y = 9 and 4x + 6y = 18, we still can’t 

solve for x and y.  

To solve a system of equations, we need to premultiply: Ax = y would give A-1Ax = A-1y  

would give x = A-1y.  

Hence, basically we use a same idea as division in scalar algebra: 4x=8  x=8/4. 

Now, we can only solve such a system of equations if the inverse of coefficient matrix A 

exists. For this, the determinant has to be non-zero. 

 

For what sorts of matrices is this a problem? It can be shown that matrices that have rows 

or columns that are linearly dependent on other rows or columns have determinants that are 

equal to zero. For these matrices, the determinant is undefined. We are given an order (k, k) 

matrix A, and denote this by using column vectors: 

A = [a1 a1 · · · ak]  

Each of the vectors ai is of order (k, 1). A column a1 of A is said to be linearly independent 

of the others if there exists no set of scalars aj such that: 

 

  
n

i j j

j i

a a


  

 

Thus, given the rest of the columns, if we cannot find a weighted sum to get the column we are 

interested in, we say the matrix is linearly independent. 

We can define the term rank. The rank of a matrix is defined as the number of linearly 

independent columns (or rows) of a matrix. If all of the columns are independent, we say that 

the matrix is of full rank. We denote the rank of a matrix as r(A). By definition, r(A) is an 
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integer that can take values from 1 to k. This is something that can be computed by software 

packages. 

Some important things to remember:  

 For an inverse to exist, A must be square. This is a necessary, but not sufficient, 

condition 

 If the inverse of a matrix does not exist, we say that it is singular. 

 
 The following statements are equivalent: full rank  <> nonsingular <> invertable. 

 If the determinant of A equals zero, then A is said to be singular, or not invertable. 

 More generally, if  |A| ≠ 0 then A singular. 

 If the determinant of A is non-zero, then A is said to be nonsingular, or invertable. In 

other words, the inverse exists. More generally, If |A| = 0  then  A nonsingular. 

 If a matrix A is not of full rank, it is not invertable; i.e., it is singular. 

 
 AA-1 =I  A-1 A =I  A-1 is unique. 

 (A-1)-1
 = A. In words, the inverse of an inverse is the original matrix. 

 Just as with transposition, it can be shown that (AB)-1
 = B-1A-1 

 One can also show that the inverse of the transpose is the transpose of the inverse. 

 Symbolically, (A’)-1
 = (A-1)’ 

 

 

Generalized Inverse 

For matrices not of full rank, an inverse does not exist. If matrix A has order M x N, the 

maximum possible order is n. The generalized inverse (g-inverse) G of matrix A is such that  

 

  AGA = A. 

 

The generalized inverse is not unique. G is also not necessarily symmetric.  

Whereas a normal inverse is usually written as A-1, a generalized inverse has the notation A-. 

 

Trace of a Matrix: 

The trace of a matrix is sometimes, although not always, denoted as tr(A). The trace 

is used only for square matrices and equals the sum of the diagonal elements of the 

matrix. For example, 

 

4 6 2

3 7 5

2 3 9

tr

 
 

 
 
 

 4 + 7 + 9 = 20 

 

Orthogonal Matrices: 

Only square matrices may be orthogonal matrices, although not all square matrices 

are orthogonal matrices. An orthogonal matrix satisfied the equation 

AA’= I 

Thus, the inverse of an orthogonal matrix is simply the transpose of that matrix. 

Orthogonal matrices are very important in factor analysis. Matrices of eigenvectors 

(discussed below) are orthogonal matrices. 
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Eigenvalues and Eigenvectors 
The eigenvalues and eigenvectors of a matrix play an important part in multivariate analysis. 

This discussion applies to correlation matrices and covariance matrices that (1) have more 

subjects than variables, (2) have variances > 0.0, and (3) are calculated from data having no 

missing values, and (4) no variable is a perfect linear combination of the other variables. Any 

such covariance matrix C can be mathematically decomposed into a product: 

 

C = ADA’
 

 

where A is a square matrix of eigenvectors and D is a diagonal matrix with the 

eigenvalues on the diagonal. If there are n variables, both A and D will be n by n 

matrices. Eigenvalues are also called characteristic roots or latent roots. Eigenvectors 

are sometimes refereed to as characteristic vectors or latent vectors. Each eigenvalue 

has its associated eigenvector. That is, the first eigenvalue in D (d11) is associated with the 

first column vector in A, the second diagonal element in D (i.e., the second eigenvalue or 

d22) is associated with the second column in A, and so on. Actually, the order of the 

eigenvalues is arbitrary from a mathematical viewpoint. However, if the diagonals of D 

become switched around, then the corresponding columns in A must also be switched 

appropriately.  

 

Example: C = 

100 90 10

90 100 10

10 10 100

 
 
 
 
 

,  

 

then eigenvalues in D 

10.0 0 0

0 192.17 0

0 10 97.83

 
 
 
 
 

and eigenvectors in A

.71 .70 .11

.71 .70 .11

0 .15 .99

 
 
 
  

 

 

 

Imagine C to be a matrix with variances and covariances between 3 variables. We see that C 

contains 3 variables each with equal variance and the first two highly correlated. The first 

eigenvalues has little variance and is mainly made up of the difference between the first two 

variables. The second eigenvalues has a lot of variance and mainly reflects the sum of the first 

two variables. The third eigenvalues is pretty much made up of the just the third variable, with 

only small contribution from the first two. 

Note that if the first two variables would have had a covariance close to 100 (correlation 1) the 

first eigenvalues would be close to 0. If the covariance would be higher (correlation >1), this 

eigenvalues would even become negative. Eigenvalue decomposition has an important 

application in checking consistency of covariance matrices; if some eigenvalues are negative, 

the matrix is not consistent, practically meaning that the correlation structure is not possible 

(e.g. correlations >1, or just inconsistent (when >2 variables, e.g. when variables a and b are 

highly correlated and a and c are lowly or negatively correlated, it would not be possible for b 

to be highly correlated to c). 

 

Some important points about eigenvectors and eigenvalues are: 

1) The eigenvectors are scaled so that A is an orthogonal matrix. Thus, A’ = A-1, and 

AA’ = I. Each eigenvector is orthogonal to all the other eigenvectors. 
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2) The eigenvalues will all be greater than 0.0, providing that the four conditions 

outlined above for C are true. 

3) For a covariance matrix, the sum of the diagonal elements of the covariance matrix 

equals the sum of the eigenvalues, or in math terms, tr(C) = tr(D). For a correlation 

matrix, all the eigenvalues sum to n, the number of variables.  

4) The determinant of C equals the product of the eigenvalues of C.  

5) Calculating eigenvalues is tedious, not very different from calculating inverses, use 

computerprograms.  

6) VERY IMPORTANT : The decomposition of a matrix into its eigenvalues and 

eigenvectors is a mathematical/geometric decomposition. The decomposition 

rearranges the variables into linear combinations of them that become new and 

independent variables. This rearrangement may but is not guaranteed to uncover an 

important biological construct or even to have a biologically meaningful 

interpretation.  

7) ALSO VERY IMPORTANT : Eigenvalue decomposition is used in Principal 

Component analysis. An eigenvalue tells us the proportion of total variability in a 

matrix associated with its corresponding eigenvector. Consequently, the 

eigenvector that corresponds to the highest eigenvalue tells us the dimension (axis) 

that generates the maximum amount of individual variability in the variables. The 

next eigenvector is a dimension orthogonal to the first that accounts for the second 

largest amount of variability, and so on. 

 

 

Solving Systems of Equations Using Matrices 
Matrices are particularly useful when solving systems of equations, which we use when we 

solve for the least squares estimators. Here is an example, with three equations and three 

unknowns: 

    x + 2y + z = 3 

    3x - y - 3z = -1 

    2x + 3y + z = 4 

 

How would one go about solving this? There are various techniques, including substitution, 

and multiplying equations by constants and adding them to get single variables to cancel. There 

is an easier way, however, and that is to use a matrix. Note that this system of equations can be 

represented as follows: 

 

1 2 1 3

3 1 3 1

2 3 1 4

x

y

z

    
    

       
    
    

    Ax = b 

 

We can solve the problem Ax = b by pre-multiplying both sides by A-1
 and simplifying. This 

yields the following: 

Ax = b   A-1Ax = A-1b  → x = A-1b 

 

We can therefore solve a system of equations by computing the inverse of A, and multiplying it 

by b. Here A inverse is 

8 1 5

9 1 6

11 1 7

 
 
  
  
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And x = A-1b = 

8 1 5 3 3

9 1 6 1 2

11 1 7 4 3

    
    
        
        

 

 

Computationally, this is a much easier way to solve systems of equations – we just need to 

compute an inverse, and perform a single matrix multiplication. 

This approach only works, however, if the matrix A is nonsingular. If it is not invertable, then 

this will not work. In fact, if a row or a column of the matrix A is a linear combination of the 

others, there are no solutions to the system of equations, or many solutions to the system of 

equations. In either case, the system is said to be under-determined. We can compute the 

determinant of a matrix to see if it in fact is underdetermined. 

Note also that for many equations, there are more efficient ways to solve such equations, using 

sparse matrix techniques (many coefficients in such matrices are often zero) and iteration. In 

act, it can be numerically quite risky to invert a very big matrix as the accumulation of very 

many rounding errors can become quite substantial. 

 

Example use of Matrices: Regression. 
 

Consider that we have a tiny data set on height and weight of individuals: 

 

Trait Data Means 

Weight (Y) 74 82 84 80 

Height (X) 160 170 180 170 

  

To predict weight given height we need to calculate the regression of weight on height: 

b̂(Y on X)   =  
Cov X Y

VX

( ,  )
 =  

[ (  -  ) (  -  ) ]

 -  

(  -  )  

 -  

2

X X Y Y

n

X X

n

i i
i

i
i




1

1

 =  
[ (  -  ) (  -  ) ]

(  -  )  

X X Y Y

X X

i i
i

i
i




2

 =  

x y

x

i i
i

i
i

 

 




2

 

 

Where xi and yi are height and weight expressed as deviations from their respective means. 
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Notice that if we make vectors  X =  







-10

0

10

  and  Y =  







-6

2

4

 containing deviations from 

means, then notice that ... 

 

X'X = ( )-10 0 10







-10

0

10

 = (200)    =    x
i

i

2    

 

X'Y = ( )-10 0 10







-6

2

4

 = (100)    =    x y
i i

i
   

 

 So,  just as b̂  =  

x y

x

i i
i

i
i

 

 




2

  we have:     b̂  = (X'X)-1 X'Y   =  0.5 in this case. 

 

 

The model we have used here is:     yi =     b    xi    +    ei 
 

The 'e' is for error.  For example @ i=1:   (-6) =  0.5 (-10)  +  (-1) 

 

We must have an 'e' to be able to use '='. 

 

We drop the 'e' to get predictions of weight from height:   yî   =     b̂    xi  

        (-5) =   0.5  (-10) 

 

 

We can write this model in matrix notation:      Y     =    X           b     +       e 

 

      







-6

2

4

   =   







-10

0

10

 

( ).5

   +  







-1

2

-1

 

 

A more common model is: 
 

 Yi = b1 x 1  +  b2 x (Xi - X
_

)  +  ei 

 

Note that the scalars Y and X are capital - not 

expressed as deviations from means.  We now have 2 

b's to be estimated: 

 

 

 

 

Mean
w eight  = 80Kg
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Vector b now contains: Matrix X now contains: 

 

b1 - the effect of the mean of Y (weight) 

        The weight at height (Xi - X
_

) = 0 

 

1 (100%) is the degree of expression of the 

mean's effect in each observation. 

 

 

b2  -  the effect on Y a unit deviation in X 

(i.e. the regression slope of 0.5) 

 

(Xi - X
_

) is the amount of expression of the 

effect of height on the ith weight observation. 

 

 

Now we have  X =  







1 -10

1 0

1 +10

  and  Y =  







74

82

84

  

 

 

The Model can be written in matrices:        Y         =            X               B        +        e 

 

     







74

82

84

   =   







1 -10

1 0

1 +10







80

.5    +   







-1

2

-1

 

And, as before,  b̂  = (X'X)-1 X'Y 

 

     b̂         =   (            X'                        X            ) -1            X'                  Y 

 









b̂1

b̂2

   =  















1 1 1

-10 0 +10
 







1 -10

1 0

1 +10

-1

 






1 1 1

-10 0 +10
  







74

82

84

  

 

 

The result is  









b̂1

b̂2

  =  






80

0.5
 as you would expect, mean weight 80Kg, regression 

slope 0.5 Kg/cm.  You can check this by hand 

calculation, or e.g. use matrices in Excel. 
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A model which uses raw data is:  Yi = b1 x 1  +  b2 x Xi  +  ei 

 

Vector b now contains: Matrix X now contains: 

 

b1 - is now the intercept - the predicted 

value of Y (weight) at X (height) = 

zero 

 

1 (100%) is the degree of expression of the 

intercept effect in each observation. 

 

 

b2  -  the effect on Y a unit deviation in X 

(i.e. the regression slope of 0.5) 

 

 

Xi is the amount of expression of the effect 

of height in the ith observation. 

 

 

 Now we have  X =  







1 160

1 170

1 180

 ,  Y =  







74

82

84

 ,   and ...  

 

 

The Model can be written in matrices:        Y         =            X               B        +        e 

 

       







74

82

84

   =   







1 160

1 170

1 180







-5

.5    +   







-1

2

-1

 

 

     Note the intercept is at -5Kg as in the original graph. 

And we can predict weights (Y) as:           Y
^

         =            X               B 

 

       







75

80

85

   =   







1 160

1 170

1 180







-5

.5  

 

 

     b̂         =   (            X'                           X            ) -1               X'                     Y 

 









b̂1

b̂2

  =  















1 1 1

160 170 180
 







1 160

1 170

1 180

-1

 






1 1 1

160 170 180
  







74

82

84

  

 

gives the result:  









b̂1

b̂2

  =  






-5

0.5
 

 

Again this is as expected: -5Kg  is the intercept - where the regression line cuts the vertical 

axis (this is the expected weight for x=0, i.e. for a height of zero 

– does this make sense-?) , and 0.5 Kg/cm is the regression 

slope. 
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b̂ = (X'X)-1 X'Y  is a very powerful formula.  It forms the basis of multiple regression and 

Analysis of Variance. 

X’X has the number of observations, X’Y has the totals  

 

With some modification, it forms the basis of BLUP. 

 

 

Reference Books 
Searle, S.R. 1982. Matrix Algebra Useful for Statistics.Wiley & Sons. 

 (this books gives a llot of formal prrofs and mathematical detail) 

Mrode, R.A. 1996. Linear Models for the Prediction of Animal Breeding Values. CAB Int. 

Oxon, UK.(The appendix is simple, similar to these notes) 
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Exercises 

 

Matrix Review   

Some Simple Matrix Problems 
 

 
3 1

2 1
A

 
  

 
  

1 3 0

2 4 2
B

 
  
 

 
1 2

2 6
C

 
  
 

  

 

 
2 0

0 3
D

 
  
 

  
1

4
E

 
  
 

  

1 1 1

1 0 1

0 1 1

I

 
 

  
 
 

  
1 0

0 1
I

 
  
 

 

 

 

Which matrices are square, which are symmetrical, which are diagonal, which are identity? 

Which matrices are of not of full rank? 

 

Compute the following.  One or two of these cannot in fact be computed.  You should attempt 

at least those marked with an asterisk. You may use Excel to check you work, but attempt a 

few ‘by hand’ to get a feel for matrix calculations 

 

(*) A  +  C A  -  C (*) B  +  C  6B 

 

(*) AC  CA (*) AB  BA AE 

 

(*) AI  IA  IE 

 

 AD  DA  DE 

 

 A2  D2  I2 

 

 A'  (*) B'  E' C' 

 

(*) B'A' and compare with (AB)' 

 

(*) B'B   BB'  E'E EE' 

 

(*) A-1   (*) AA-1  A-1A (AC)-1   C-1A-1 
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Matrix calculations using Excel 

 

You can do some basic matrix calculations with MS Excel.  

 

First put in the values of your matrices 

 

To multiply two matrices:  

  - select an area of the size of the resulting matrix 

  - type: =MMULT( 

  - select the area of the first matrix 

  - type  a comma (,) 

  - select area of the second matrix 

  - type a close bracket )  

       - press: Ctrl_Shift_Enter  

 

To add or subtract a matrix (vector): 

  - select an area of the size of the resulting matrix 

  - type: = ( 

  - select the area of the first matrix 

       - type a   +  or    - 

       - select area of the second matrix 

 - type a close bracket )  

  - press: Ctrl_Shift_Enter 

 

To invert a matrix: 

  - select an area of the size of the resulting matrix 

  - type: =MINVERSE( 

  - select the area of the first matrix 

  - type a close bracket )  

  - press: Ctrl_Shift_Enter 

 

To transpose a matrix (vector): 

  - select an area of the size of the resulting matrix 

  - type: =TRANSPOSE( 

  - select the area of the first matrix 

  - type a close bracket )  

  - press: Ctrl_Shift_Enter 

 

A more specialized matrix calculation program is MATLAB. It contains many more matrix 

functions and mathematical function than excel. MATLAB allows you to make and run 

programs, draw graphs, and run simulation). A MATLAB student version is very well suitable 

for animal breeding problems and quite easy to use. 
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Matrix Commands in R  

(from: Gareth James,  Daniela Witten , Trevor Hastie and Robert Tibshirani 
An Introduction to Statistical Learning with Applications in R, Springer) 
 
R uses functions to perform operations. To run a function called funcname, we type funcname(input1, 
input2), where the inputs (or arguments) input1 and input2 tell R how to run the function. A function can 
have any number of inputs. For example, to create a vector of numbers, we use the function c() (for 
concatenate). Any numbers inside the parentheses are joined together.  
The following command instructs R to join together the numbers 1, 3, 2, and 5, and to save them as a vector 
named x. When we type x, it gives us back the vector. 
x = c(1,6,2) 
> x 
[1] 1 6 2 
y = c(1,4,3) 
 
length (x) 
[1] 3 
length (y) 
[1] 3 
x+y 
[1] 2 10 5 
 
x=matrix (data=c(1,2,3,4) , nrow=2, ncol =2) 
> x 
[,1] [,2] 
[1,] 1 3 
[2,] 2 4 
 
Note that we could just as well omit typing data=, nrow=, and ncol= in the 
matrix() command above: that is, we could just type 
 
x=matrix (c(1,2,3,4) ,2,2) 
 
As this example illustrates, by default R creates matrices by successively filling in columns. Alternatively, the 
byrow=TRUE option can be used to populate the matrix in order of the rows. 
matrix (c(1,2,3,4) ,2,2,byrow =TRUE) 
[,1] [,2] 
[1,] 1 2 
[2,] 3 4 
 
Taking subsets of matrices. Suppose we have 
A=matrix (1:16 ,4 ,4) 
> A 
      [,1] [,2] [,3] [,4] 
[1,] 1 5 9 13 
[2,] 2 6 10 14 
[3,] 3 7 11 15 
[4,] 4 8 12 16 
 
 
 
Then, typing 
A[2,3] 
[1] 10 
  
A[c(1,3) ,c(2,4) ] 
    [,1] [,2] 
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[1,] 5 13 
[2,] 7 15 
 
A[1:3 ,2:4] 
   [,1] [,2] [,3] 
[1,] 5 9 13 
[2,] 6 10 14 
[3,] 7 11 15 
 
Adding matrices:  Use A+B 
Transpose:   use    At = t(A) 
 
> X 
     [,1] 
[1,]    1 
[2,]    1 
[3,]    1 
[4,]    1 
 
> t(X) 
     [,1] [,2] [,3] [,4] 
[1,]    1    1    1    1 
 
Multiplying matrices use  A %*% B 
  
> t(X)%*% X 
     [,1] 
[1,]    4 
 
Note that A * B multiplies each element individual of 2 matrices of equal dimension. This is NOT a matrix 
multiplication 
 
Inverse of A: AINV = solve(A) 
 
#setting up a small example for a mixed model 
 
#First set up the variables 
data       = array(c(10,20,30,40))   #we have 4 records here 
nrecords   = dim(data) 
y          = matrix(data,ncol=1)   # put those in vector y 
X          = matrix(1,nrow=nrecords, ncol=1)    # make X as a vector which just ones 
Z          =diag(1,nrecords)      #make Z as an identity matrix  
alpha = 3      # just a scalar   
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# example of a relationship matrix 
A          =matrix(c(1,0,.5,.5, 0,1,.5,.5, .5,.5,1,.5, .5,.5,.5,1),nrow=4)   
A 
     [,1] [,2] [,3] [,4] 
[1,]  1.0  0.0  0.5  0.5 
[2,]  0.0  1.0  0.5  0.5 
[3,]  0.5  0.5  1.0  0.5 
[4,]  0.5  0.5  0.5  1.0 
 
AI=solve(A) 
> AI 
     [,1] [,2] [,3] [,4] 
[1,]    2    1   -1   -1 
[2,]    1    2   -1   -1 
[3,]   -1   -1    2    0 
[4,]   -1   -1    0    2 
 
Setting up a coefficient matrix for mixed model, putting submatrices together 
 
XX= t(X) %*% X 
XZ= t(X) %*% Z 
 
ZX= t(Z) %*% X 
ZZ= t(Z) %*% Z  
C22=ZZ + alpha*AI 
 
Ctop = cbind(XX, XZ) 
Cbot = cbind(ZX,C22) 
MMElhs = rbind(MMEtop,MMEbot) 
 
Xy= X %*%y 
Zy= Z %*%y 
 
MMErhs = rbind(Xy,Zy) 
 
# Solve the equations 
Cinv   = solve(MMElhs)  
MMEsoln=Cinv %*% MMErhs   
  
Or simply:   
MMEsoln= solve(MMElhs,MMErhs) 
 
 

 


