4: Estimation Theory

Chapter 4

Estimation Theory
Julius van der Werf

A linear relationship can generdly be found to fit most biologica data adthough some
transformation may be required. A smplelinear modd has the form

E(y)=a+b.x

A linear modd can generdly be used to describe data. Non-linear model could be defined
aswal, eg. E(y) being a function of > or log(x)® or b*. However, linear modds are usualy
much easer to solve (estimate parameters) and many non-linear problems can often be
represented as alinear modd.

All modes contain a set of factors composed of three parts which additively affect the
observations or records of data:

) theequation

ii) expectations and variance covariance matrices of random variables

iif) assumptions, limitations and redrictions

Estimating Fixed Effects

Consider agenerd modd
y=Xb+ e ..(1)

with E(y) =Xb and
var(y) =V =va(e) (2.

We want to estimate fixed effects in b and conduct hypothesis testing about the significance
of differences between the different levels of effects. Note that e is a vector with random
effects. They can be caused by several random factors (eg. anima and resdud) and the
different levels may be correlated (e.g. due to repeated measurements on the same animals),
e.g. var(e) maybeequd toV = ZGZ' +R.

To find good estimators of the fixed effects parameters for aset of data, triad and error could
be used. However the method of least squares, developed by Gaussin 1809 and Markoff in
1900 is commonly used for estimating these parameters of which the theorem dtates that
.. under the assumption of normdity and the modd as
described in (1) and (2) the least squares estimators by and
b, are unbiased and have minimum variance among al
unbiased linear estimators.
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The proof is given in severd texts on linear models. Unbiasedness occurs when E(Xb) = Xb
where b is an edimae of b, However to estimate the vaue of these edtimates,
consderation needs to be given to the deviation of y; from its expected value

E(y) = Xb (3

and more importantly to the sum of the N squared deviations (errors) given as Q where
Q = (y- Xb)' (y-Xb) ~(4)

According to the method of least squares the best estimatorsof b and b; arethose which
minimise Q.

Best - maximises the correlation between true and estimated vadue of effects by
minimising the error variance.

Linear - the factors for which estimates are required ae linear functions of the
observations.

Unbiased - egtimates of fixed effects and estimable functions are such that E(b | b) = b.

Deriving Estimates Using Ordinary L east Squares
The generd fixed effects modd in matrix for is

y=Xb+e ..(5)
where y is a vector of obsarvations, X is an incidence matrix linking the independent
variables to the observations, b is a vector of effects to be solved and e isa vector of error
terms. For ordinary leest squares (OLS), error terms are independently and identically

distributed random variables with a mean of zero and a variance of s ¢ such that var(y) =
var(e) = Iy s & where |y isadispersion matrix for n observations. Given that E(y) = Xb,

Q=(y - Xb) (y - Xb)
which when differentiated with respect to b gives
Q0 = -2(Xy + X'Xb).
Equating to zero gives
X'Xb=X"y

which are referred to as the normal equations which if the inverse of X’ X exigts, provides
the least square estimator of b:

b=XX)'Xy ..(6)
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Thus ordinary least squares assumes that all observations are uncorrelated and have a
common variance s &. If estimates are derived when this is not true then they are no longer

‘best’ ance Q isno longer minimised.

Generalised Least Squares

For ordinary least squares, the criterion (4) weights each observation equaly as the
assumption is that the error terms are equally and identically distributed. However s & may
not be common to al observations. More generdly, let var(e) =V and V could be diagond
(uncorrelated error but unequa variances, or not diagond (errors could be correlated). It is
very often that random terms are correlated, e.g. when having more observations on the
same anima or observations among geneticaly related animals. In that case, we could aso
fit arandom term (e.g. animal) and resduas could still be uncorrelated. But with the respect
to estimation of fixed effect, random terms are not uncorrelated and we have to generdize
va(y) = V. Edimation of fixed effect is than dso more complicated, leading to the
generdised least squares criterion for smplelinear regresson is

Qc = Q= (y- Xb)'V*(y-Xb)
Minimisng Qg with respect to by and b leads to the appropriate normal equations of
X'VIX)b =X'VY
Determining a generalised inverse for X’V™X givesthe least square estimates as
b = (X’VIX) X'V?Y (7
which is a general equation for Best Linear Unbiased Estimates of fixed effects mode in any

linear modd. This will be further discussed under mixed modds and we fird assume we
have generdly V, with often Smply V = Is 2.

Estimability

Because a generdized inverse of X'V X is used there are a large (infinite) number of
possible solutions to b. However, any solution vector can be used to compute estimable
functions of b. An estimable function has the same numeric vaue, i.e. is wique, for any of
the possible solution vectors. The fallowing functions are dways estimable:

Any linear function of y is estimable
Any linear function of E(y) isestimable

K'bisetimableif K’ =TX for someT, i.e. T isalinear combination of rowsin X.
Qbisetimadleif Q (X' VX)X'VX =Q’

Example:
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has many possible solutions, eg. b’ = [0 20.5 19] or [20 +0.5 -1]. (Verify thig)
However, the function m+ a; is equa to 20.5 for dl possible solutions. Also the difference
a;- a, isaways equd to 1.5. Only esimable functions have a meaning in a datidtica
andysis because they are unique.

Statigtica packages usudly give a set of solutions that is based on a condraint.
Congtraints enforce unique solutions for b, but because the condraints are arbitrary, the
solutions are arbitrary as well. Condraints can be enforced by manipulation the X matrix
such that it becomes non-singular, i.e. linear combinations of the columns should not be able
to result in ancther linear combination of columns. The example data set 2 from the previous
Chapter illugrates estimability and uniqueness of solutions. In brief again:

We can find solutions by setting a redtriction:
1) put the generd mean to zero
2) put one of the yearsto zero
3) put the sum of the year effectsto zero

NB: The option you choose is arbitrary, it does effect the estimates of estimable functions,
e.g. , the esimate of the year differencel
Summarizing the different options for X, and the resulting solutions:

General mean zero First year zero Last year zero Sum of yearsto zero
(b2000=0) (b2002=0) (b2000+ b2001 +
b2002=0)

X b X b X b X b
100 3025 100 3025 110 330 110 313
100 3065 100 4.0 110 -275 110 -105
010 330 110 +275 101 -235 101 -65
010 110 101 101
010 110 101 101
010 110 101 101
001 101 100 1-1-1

m=20 m= 3025 m= 330 m= 313
2000=3025 2000=0 2000=-275 2000= -105
2001 =306.5 2001=+4 2001=-235 2001= -65
2002=330 2002=+275 2002=0 2002= 17

We see from the different restrictions that the important parameters (the actud year
differences) are dways the same. In fact, with only one fixed effect in the model, these year
differences can be estimated from the raw means for each year.
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Least Square Means

In most scientific articles we find estimates of “Least Square Means’. Aswe have seen, the
modd term pisitsdf not an estimable function and has no unique solution. The overal lesst
sguare mean estimator can be given by K’ 6, eg. k=[1 0.33 0.33 0.33 0.25 0.25 0.25
0.25]. Note that this not an estimate of 1, but of p plus an average of dl levels of effect A
and an average of dl levels of effect B (for example). It would be only equa t pisthe‘sum
to zero' condraint is gpplied to dl effects. The LS mean for leve 1 of effect A would be
obtainedbyusng[1 1 0 0 0.25 0.25 0.25 0.25], induding 1, that particular effect a,
and an average of other effects. In generd, the LSM of alevel of some factor is an etimate
of 1 plusthat factor level plusthelevesof al factorsin which it is nested plus the average of
al levels of other factors with which it is cross classfied, plus regressons a average vaues
of the independent variables.

Connectedness

A lack of connectedness among subclasses of fixed effects in a modd can have serious
conseguences on estimability. If al subclasses of the fixed effects are full, i.e. contain a least
one observation, then the data are completely connected and there are no problems with
estimability. However, when severd subclasses are empty the subclasses are not connected
and some functions of b may not be estimable.

Connectedness can be eva uated by making tables of one fixed effect vs. another fixed effect
and write the number of observations.

For example:

Yer \ sex | Mde Femde
2000 1 1

2001 2 2

2002 1 0

Although not al subclasses are filled, the data is connected. It would not if the Mde in the
2002 would be castrated such that we would have 3 sex classes, as in that case there would
be a disconnected subset.

Year \ sex | Mde Steer Femde
2000 1 0 1
2001 2 0 2
2002 0 1 0
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If there is disconnectedness in the data, the statistical programs will generaly smply give no,
or a zero solution to the effect associated with the disconnected subclass (i.e. no solution for
year 2002 and Steer). Sometimes certain effects are nested within other effects. For
example, herd 1 has only date from 2000 and 2001 whereas herd 2 has only data from
2002 and 2003. In that case the herd effect can not be estimated when years are fitted.
When undertaking data andysis, it is important to understand such aspects of the design.
For example, one could find out (e.g. with awk) how many year effects are in the data as
well as how many year* herd combinations there are. If thisis equa we know that one effect
must be nested within the other.

Confounding

The best design to estimate parametersis a balanced design. There is an estimation problem
if the data is disconnected. For example, in the last Table we can not distinguish between the
effect of year 2002 and the effect of steers. However, in many cases the data is not
balanced, but also not disconnected. Hence, thereis a certain degree of confounding. Look
at the following examples 3 and 4 and decide whether or not the fixed effects are Sgnificant.

Exmp3.dat

2000
2000
2000
2000
2001
2001
2001
2001

nodel

Mal e 316
Female 314
Mal e 312
Mal e 324
Female 311
Mal e 312
Femal e 293
Femal e 304

male female

2000 3 1
2001 1 3

statenment: weight ~ nmu con(sex) con(year)

Output: exmp3.asr

6 con(year) 1 2.06 2.06 5.806 [DF F_i F_a SED]
5 con(sex) 1 4. 36 1.19 5.806 [DF F_i F_a SEDO]
nodel statement: weight ~ nu con(year) con(sex)
Output: exmp3.asr
6 con(sex) 1 1.19 1.19 5.806 [DF F_i F_a SED
5 con(year) 1 5.23 2.06 5.806 [DF F_i F_a SED|
Exmp4.dat
15 109 287
17 116 298
18 119 306
18 116 303
19 117 302 B
19 119 312 £ o s
20 121 316 2 >
21 122 324 ¢
100 T T T T T T T
14 15 16 17 18 19 20 21 22
age (mo)
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anal ysis of test data 4 LM course
age
hei ght
wei ght

exmnmp4. dat

wei ght ~ mu hei ght age

Output: exmp4.asr
1 age 1 3.03 3.03 [DF F_inc F_all]
2 hei ght 1 70.50 1.67 [DF F_inc F_all]

anal ysis of test data 4 LM course
age
hei ght
wei ght

exmnmp4. dat

wei ght ~ nmu age hei ght

Output: exmp4.asr
2 hei ght 1 1.67 1.67 [DF F_inc F_all]
1 age 1 71.87 3.03 [DF F_inc F_all]

The conclusion is that an ingppropriate design does not dlow you to make clear inferences
about the different fixed effects. This might be ok if fixed effects are just ‘nuisance
parameters, eg. when you are mainly interested in genetic parameters of EBVs, and fixed
effects need to be corrected for. However, even in those cases, inadequate designs make
edimates of fixed effects not very accurate. In example 3, the sex difference is estimated
based on one comparison in each year (what is the femae in 2000 happened to be a good
one?) Inaccurate fixed effect estimates do affect accuracy of genetic parameter estimates as
well.

Analysis of an example data set
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Calf ID Age of Dam Breed Growth Rate
(yr) (kg/day)
1 2 AN 2.10
2 3 AN 2.15
3 4 AN 2.20
4 5+ HE 2.35
5 5+ HE 2.33
6 2 HE 2.22
7 3 HE 2.25
8 3 HE 2.27
9 4 SM 2.50
10 5+ SM 2.60
11 2 SM 2.40
12 2 SM 2.45

An gppropriate model to describe this data would be a two-way cross classified mode
without interaction:
Yik=bo+ b + by +e

where

Yijk IS an observation on the growth rate of caves

by isthe overdl mean

bi is an effect due to the age of dam of thecaf (i = 1,...4)

b isan effect due to the breed of the cdf (j=1,....3)

ek Istheresdua for each observation

The modd written in metrix notation is
y=Xb+e
The assumptions of the model are
- there are no breed by age of dam interactions
- dl other effects were the same for dl calves, eg. diet, age, cg
- erors terms are independent and random variables identically distributed around a
mean of 0 and avariance of s .
The expectation of y is
E(y) =Xb
andthevarianceof y is
V(y)=1sé
where
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Normal Equations
The norma equationsfor GLS are

X'VX)b=X'Vly
however asV(y) = | s¢& then

SZ(X'X)b=s2 X'y

and the GL S equations reduce to those of OL S equations, ie.

X' X)b=X'y
which in expanded matrix formis
gl2 4 3 2 3 3 5 4uéb,y &782)
é ué, u é a
24 400011 zagbﬂu £917 ¢
€3 0 3 0 0 1 2 0uéb,u é6670
é ué. u é a
(292 002010 1@§b13g:§4'70@
€3 0 0 0 3 0 2 1uep,u €728u
é ué u é a
§3 1110320 Ol;l§b21lzl §645u
€5 1 2 0 2 0 5 0U&, U €142u
é gé “u é a
g4 2 0 1 1 0 0 4g@bs 89954

Obtaining Solutions

X' X is a pogitive sami-definite matrix with a rank of 6. The dependencies are that columns
2, 3, 4 and 5 and then columns 6, 7 and 8 both sum to give column 1 and thus two
congtraints on the solution are needed. Letting by and by, be then set to zero, a generdised
inverse of X’ X isequd to (X’ X)” whichwewill cdl G.
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€.000 0000 0000 0000 0.000 0000 0000 0.000
.000 0000 0000 0000 0000 0000 0000 00009
€.000 0000 0714 0225 0322 -0313 -0414 -0.1370

_ 000 0000 0225 0793 0194 -0.339 -0167 -0247
€000 0000 0322 0194 0670 -0172 -039%6 -02160
€000 0000 -0313 -0339 -0172 0551 0194 0128
0000 0000 -0414 -0167 -039% 0194 0524 01411
@000 0000 -0137 -0247 -0216 0128 0141 0366 g

for which the corresponding solution vector is b = X' X)X'y=GXy;,

D
o
o

oocooooooaooooao o

€0.000
€.000Y
e u
€0.052(

u
go.oszg
01470
£2105);
€.204u

e u
&2.4304,

N 5 Kk B
I

%)_(;D)g_))(‘Dg))("D:CP; >>)CE)7§D)8-)>CD) N
=

N
w

However G above is one of severa generdised inverses for X’ X and thus there are severd
possible solution vectors. In fact there are an infinite number of possble solution vectors
which are given by the formula,

b= (X'X)X'y + (I - (X’ X)X'X)z
Egimable Functions

where zisan arbitrary vector of congtants.

By computing the expected vaue of the solution vector, the functions of true parameters
that have been edtimated by a particular generdised inverse can be determined. These
solutions are estimable because the solution vector is a linear function of y which is
always estimable.

Egtimable functions are unique regardless of the solution vector. Consder the function b 12-

611 (this function is obtained by multiplying the third row of the matrix of estimable function
by b), which can be more generdly written as

A

Kb=(0-1100000)b= byp-bny

If another solution vector is used, the same vaue will be produced for the same function.
Thus one quick way to determine if afunction is estimable isto multiply it by b and b°; if the
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results differ then that function is not estimable. A further method to determine if afunction is
esimableisto check if

ki' (X’ X)X'X =k’
Variance of Estimable Functions

The variance of an estimable function isgiven as

V(k'b) = k'V(b)k
= K'V((GX’y)k
= KGX'V(Y)XG'k
= KXX)X'X(X'X) 'k s&
and sncek’ (X’ X)X'X =K, if kisestimable
= KX'X)ksé

Sowhenk’ =(0 -1 100 0 0 O)andk b =0.052then V(K' b) =

€000 0000 0000 0000 0000 0000 0000 00000y
goooo 0000 0000 0000 0000 0000 0000 0000 $ 13
€000 0000 0714 0225 0322 -0313 -0414 -0I37&1(
000 0000 0225 0793 0194 -0339 -0167 -024750
0000 0322 0194 0670 -0172 -039% -0216(00
0000 -0313 -0339 -0172 0551 0194 0128 ;50
0000 -0414 -0167 -039% 0194 0524 0141 £03
0000 -0137 -0247 -0216 0128 0141 0366 (50§

(0-11000 0 0

(‘E)('D>8> %(‘D>-8> CDéS‘D
2888

=0.714s ¢

Smilarly if anumber of estimable functions are to be consdered then

© -10100 0 Oy €0.082()
K’:go 2100100 Ogthen K’6:20.1473

B 1 0001 0 Of 2105
and

60793 0194 -0.339
V(K'b) = K'(X'X)K s& = 20.194 0670 - 0.1723 S¢
g 0339 -0172 0552 §

The standard errors of the estimable functions are obtained as the sgquare root of the

variances of the estimable functions located on the diagond's above.
In ASREML you can use ‘contrast’ to test hypothesis.

Least Square Means
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Least square means (LSM) are commonly used in scientific articles as they relate directly to
the actud measurements of data and are thus readily understood. However least square
means are not equal to the actua raw means but are estimable functions and as such are, of
course, unigue. In fact LSMs are smply estimators of the margina means of different classes
or subclasses that would be expected in a balanced design, for example

sex1l | sex2 | LSM (Year)
Year 1 11.0 9.0 10.0
Year 2 16.0 12.0 14.0
LSM (sex) | 135 105 12.0

Here the LSM for sex 1 corrected for year effectsis 13.5 or dternatively the LSM for Y ear
1is10.0 corrected for sex effects. In the same way least square means can be derived for
the different sub-classes of each effect in the previous data corrected for dl other effects
through the use of regresson coefficients. For instance the least square means for the
different levels of the effect of age of dam would be

Age of Dam L.S. Mean
2 2.247
3 2.299
4 2.329
5+ 2.39%4

These are not smply bo+ by, esoeadly in this case as this is not an estimable function.

Instead these means are estimating bo+ by + 1/3(b21 + Do+ b23) Alternatively the least
sguare means for the different levels of breed effects are

Breed L.S. Mean
Angus 2.176
Hereford 2.275
Simmental 2.501

which are estimating Do+ V4(b 1 + D1 + D13 + D1a) + b
Exercisesfor linear models

1 Revison questions
Write afixed effect modd for two independent variables
Give the expectation of the dependant variable (1% moment)
Give the variance of the dependant variable (2™ moment)
State the assumption of the model

2 Regression Model:
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We have measured the litter Sze of agroup of sows, and are interested in some effects on
thistrait, in particular the effect of the age of the sow, and the effect of fat depth at
insemingtion.

sngle regresson:
y = litter Sze pigs [7 8 9 8 9 10 9 10 11 12]
X = sow weight at insemination (kg) [ 100 110 120 125 125 130 130 145 150 160]
multiple regression

y = asbefore,

x1 =asx before

x2 = fat depth at insemination (mm) [20 30 25 40 25 30 35 40 35 35
Edtimate regression coefficients for linear regresson models
(You may try aso 2™ order regression if you like)

3 Regression and classeffects

Consder the following data where fat depth was measured on bulls in two feeding regimes.
The bulls were measured a different ages.

Fat Depth (mm) Feeding Regime Age at measuring (Mo)
20 Intensive 10
20 Int 14
19 Int 15
24 Int 16
24 Int 17
25 Int 20
26 Int 20
19 Extensive 17
19 Ext 19
21 Ext 21
20 Ext 23

1) Edgtimate the effect of age on Fat Depth without consideration of feeding regime
2) Edtimate the same effect with congderation of feeding regme
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