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Chapter 4 
 

Estimation Theory 
Julius van der Werf 

 
A linear relationship can generally be found to fit most biological data although some 
transformation may be required. A simple linear model has the form  
 
 E(y) = a + b.x  
 
A linear model can generally be used to describe data. Non-linear model could be defined 
as well, e.g. E(y) being a function of xa or log(x)b or bx. However, linear models are usually 
much easier to solve (estimate parameters) and many non-linear problems can often be 
represented as a linear model. 
 
All models contain a set of factors composed of three parts which additively affect the 
observations or records of data: 

i) the equation 
ii) expectations and variance covariance matrices of random variables 
iii)  assumptions, limitations and restrictions 

 
 
Estimating Fixed Effects  
 
Consider a general model   

y = Xb +  ε      ...(1) 
 
with E(y) = Xb     and       
var(y) = V = var(ε)      …(2).  

 
We want to estimate fixed effects in b and conduct hypothesis testing about the significance 
of differences between the different levels of effects. Note that ε is a vector with random 
effects. They can be caused by several random factors (e.g. animal and residual) and the 
different levels may be correlated (e.g. due to repeated measurements on the same animals), 
e.g. var(ε) maybe equal to V = ZGZ’+R. 
 
 
To find good estimators of the fixed effects parameters for a set of data, trial and error could 
be used. However the method of least squares, developed by Gauss in 1809 and Markoff in 
1900 is commonly used for estimating these parameters of which the theorem states that 

... under  the assumption of normality and the model as 
described in (1) and (2) the least squares estimators b0 and 
b1 are unbiased and have minimum variance among all 
unbiased linear estimators. 
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The proof is given in several texts on linear models. Unbiasedness occurs when E(Xβ) = Xb 
where β  is an estimate of b,. However to estimate the value of these estimates, 
consideration needs to be given to the deviation of yi from its expected value 

E(y) = Xb ...(3) 
 
and more importantly to the sum of the N squared deviations (errors) given as Q where 
 

Q = (y- Xβ)’(y-Xβ)    ...(4) 
 
According to the method of least squares the best estimators of β0 and β1  are those which 
minimise Q. 
 
Best - maximises the correlation between true and estimated value of effects by 

 minimising the error variance. 
Linear - the factors for which estimates are required are linear functions of the 

 observations. 
Unbiased - estimates of fixed effects and estimable functions are such that E(β | b) = b. 
 
 
Deriving Estimates Using Ordinary Least Squares 
 
The general fixed effects model in matrix for is 
 

y = Xb + e ...(5) 
 
where y is a vector of observations, X is an incidence matrix linking the independent 
variables to the observations, b is a vector of effects to be solved and e is a vector of error 
terms. For ordinary least squares (OLS), error terms are independently and identically 
distributed random variables with a mean of zero and a variance of σe

2 such that var(y) = 
var(e) = IN σe

2 where IN is a dispersion matrix for n observations. Given that E(y) = Xb, 
Q = (y - Xβ)’ (y - Xβ) 

 
which when differentiated with respect to b gives 

 
δ

δ
Q

b  = -2(X’y + X’Xb). 

 
Equating to zero gives 

 
X’Xb = X’y 

 
which are referred to as the normal equations which if the inverse of X’X exists, provides 
the least square estimator of β: 

 
b̂  = (X’X)-1 X’y ...(6) 
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Thus ordinary least squares assumes that all observations are uncorrelated and have a 
common variance σe

2. If estimates are derived when this is not true then they are no longer 
‘best’ since Q is no longer minimised. 
 
 
Generalised Least Squares 
For ordinary least squares, the criterion (4) weights each observation equally as the 
assumption is that the error terms are equally and identically distributed. However σe

2 may 
not be common to all observations. More generally, let var(e) = V and V could be diagonal 
(uncorrelated error but unequal variances, or not diagonal (errors could be correlated). It is 
very often that random terms are correlated, e.g. when having more observations on the 
same animal or observations among genetically related animals. In that case, we could also 
fit a random term (e.g. animal) and residuals could still be uncorrelated. But with the respect 
to estimation of fixed effect, random terms are not uncorrelated and we have to generalize 
var(y) = V. Estimation of fixed effect is than also more complicated, leading to the 
generalised least squares criterion for simple linear regression is 
 

QG = Q = (y- Xβ)’V-1(y-Xβ) 
 
Minimising QG with respect to β0 and β1 leads to the appropriate normal equations of 
 

(X’V-1X) β  = X’V-1Y 
 
 Determining a generalised inverse for X’V-1X gives the least square estimates as 
 

β  = (X’V-1X)- X’V-1Y ...(7) 
 
which is a general equation for Best Linear Unbiased Estimates of fixed effects model in any 
linear model. This will be further discussed under mixed models and we first assume we 
have generally V, with often simply V = Iσe

2. 
 

Estimability 
 
Because a generalized inverse of X’V-1 X is used there are a large (infinite) number of 
possible solutions to b. However, any solution vector can be used to compute estimable 
functions of b. An estimable function has the same numeric value, i.e. is unique, for any of 
the possible solution vectors. The following functions are always estimable: 
 

• Any linear function of y is estimable 
• Any linear function of E(y) is estimable 
• K’b is estimable if K’ = TX for some T, i.e. T is a linear combination of rows in X. 
• Q’b is estimable if Q’(X’V-1X)-X’V-1X = Q’ 

 
 
Example: 
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has many possible solutions, e.g. β’ = [0  20.5  19] or  [20  +0.5  -1]. (Verify this) 
However, the function µ + α1 is equal to 20.5 for all possible solutions. Also the difference 
α1 − α2 is always equal to 1.5. Only estimable functions have a meaning in a statistical 
analysis because they are unique.  
 

Statistical packages usually give a set of solutions that is based on a constraint. 
Constraints enforce unique solutions for b, but because the constraints are arbitrary, the 
solutions are arbitrary as well. Constraints can be enforced by manipulation the X matrix 
such that it becomes non-singular, i.e. linear combinations of the columns should not be able 
to result in another linear combination of columns. The example data set 2 from the previous 
Chapter illustrates estimability and uniqueness of solutions. In brief again: 

 
We can find solutions by setting a restriction: 

1) put the general mean to zero 
2) put one of the years to zero 
3) put the sum of the year effects to zero 
 

NB: The option you choose is arbitrary, it does effect the estimates of estimable functions, 
e.g. , the estimate of the year difference! 
Summarizing the different options for X, and the resulting solutions: 
 
General mean zero First year zero   Last year zero  Sum of years to zero 

(b2000=0)    (b2002=0)             (b2000+ b2001 + 
b2002=0) 

X $b   X $b   X $b   X $b  
1 0 0 302.5  1 0 0 302.5  1 1 0 330  1 1 0     313 
1 0 0 306.5  1 0 0   4.0  1 1 0 -27.5  1 1 0    -10.5 
0 1 0 330  1 1 0 +27.5  1 0 1 -23.5  1 0 1     -6.5 
0 1 0   1 1 0   1 0 1   1 0 1 
0 1 0   1 1 0   1 0 1   1 0 1 
0 1 0   1 1 0   1 0 1   1 0 1 
0 0 1   1 0 1   1 0 0   1 -1-1 
   µ  =  0   µ = 302.5        µ = 330     µ =     313  
2000 = 302.5  2000 = 0     2000 = -27.5  2000 =    -10.5  
2001 = 306.5  2001 = +4     2001 = -23.5  2001 =    -6.5 
2002 = 330  2002 = +27.5     2002 = 0  2002 =    17 
 
We see from the different restrictions that the important parameters (the actual year 
differences) are always the same. In fact, with only one fixed effect in the model, these year 
differences can be estimated from the raw means for each year. 
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Least Square Means 

In most scientific articles we find estimates of “Least Square Means”. As we have seen, the 
model term µ is itself not an estimable function and has no unique solution. The overall least 
square mean estimator can be given by k’ b̂ , e.g. k = [1  0.33  0.33  0.33  0.25  0.25  0.25  
0.25]. Note that this not an estimate of µ, but of µ plus an average of all levels of effect A 
and an average of all levels of effect B (for example). It would be only equal t  µ is the ‘sum 
to zero’ constraint is applied to all effects. The LS mean for level 1 of effect A would be 
obtained by using [1  1  0   0    0.25  0.25  0.25  0.25], including µ, that particular effect aa 
and an average of other effects. In general, the LSM of a level of some factor is an estimate 
of µ plus that factor level plus the levels of all factors in which it is nested plus the average of 
all levels of other factors with which it is cross classified, plus regressions at average values 
of the independent variables. 

Connectedness 
A lack of connectedness among subclasses of fixed effects in a model can have serious 
consequences on estimability. If all subclasses of the fixed effects are full, i.e. contain at least 
one observation, then the data are completely connected and there are no problems with 
estimability. However, when several subclasses are empty the subclasses are not connected 
and some functions of b may not be estimable.  
 
 
Connectedness can be evaluated by making tables of one fixed effect vs. another fixed effect 
and write the number of observations.  
 
 
For example: 
Year       \    sex Male Female 

2000 1 1 

2001 2 2 

2002 1 0 

 
Although not all subclasses are filled, the data is connected. It would not if the Male in the 
2002 would be castrated such that we would have 3 sex classes, as in that case there would 
be a disconnected subset. 
 
Year       \    sex Male Steer Female 

2000 1 0 1 

2001 2 0 2 

2002 0 1 0 
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If there is disconnectedness in the data, the statistical programs will generally simply give no, 
or a zero solution to the effect associated with the disconnected subclass (i.e. no solution for 
year 2002 and Steer). Sometimes certain effects are nested within other effects. For 
example, herd 1 has only date from 2000 and 2001 whereas herd 2 has only data from 
2002 and 2003. In that case the herd effect can not be estimated when years are fitted. 
When undertaking data analysis, it is important to understand such aspects of the design. 
For example, one could find out (e.g. with awk) how many year effects are in the data as 
well as how many year*herd combinations there are. If this is equal we know that one effect 
must be nested within the other. 

 

Confounding 
The best design to estimate parameters is a balanced design. There is an estimation problem 
if the data is disconnected. For example, in the last Table we can not distinguish between the 
effect of year 2002 and the effect of steers. However, in many cases the data is not 
balanced, but also not disconnected. Hence, there is a certain degree of confounding.  Look 
at the following examples 3 and 4 and decide whether or not the fixed effects are significant. 
 
Exmp3.dat 
2000  Male    316 
2000  Female  314 
2000  Male    312 
2000  Male    324 
2001  Female  311 
2001  Male    312 
2001  Female  293 
2001  Female  304 
 
model statement: weight ~ mu con(sex) con(year) 
 
Output: exmp3.asr 
6 con(year)    1        2.06        2.06   5.806     [DF F_i F_a SED] 
5 con(sex)     1        4.36        1.19   5.806     [DF F_i F_a SED] 
 
model statement: weight ~ mu con(year) con(sex)  
 
Output: exmp3.asr 
6 con(sex)     1        1.19        1.19   5.806     [DF F_i F_a SED] 
5 con(year)    1        5.23        2.06   5.806     [DF F_i F_a SED] 
 
Exmp4.dat 
15  109       287 
17  116       298 
18  119       306 
18  116       303 
19  117       302 
19  119       312 
20  121       316 
21  122       324 
 

male female
2000 3 1
2001 1 3

100
14 15 16 17 18 19 20 21 22

age (mo)

h
ei

g
h

t (
cm

)
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analysis of test data 4 LM course 
  age 
  height   
  weight 
exmp4.dat 
weight ~ mu height age  
 
Output: exmp4.asr 
  1 age        1        3.03        3.03 [DF F_inc F_all] 
  2 height     1       70.50        1.67 [DF F_inc F_all] 
 
analysis of test data 4 LM course 
  age 
  height   
  weight 
exmp4.dat 
weight ~ mu age height 
 
Output: exmp4.asr 
  2 height      1        1.67        1.67 [DF F_inc F_all] 
  1 age         1       71.87        3.03 [DF F_inc F_all] 
 
The conclusion is that an inappropriate design does not allow you to make clear inferences 
about the different fixed effects. This might be ok if fixed effects are just ‘nuisance 
parameters, e.g. when you are mainly interested in genetic parameters of EBVs, and fixed 
effects need to be corrected for. However, even in those cases, inadequate designs make 
estimates of fixed effects not very accurate. In example 3, the sex difference is estimated 
based on one comparison in each year (what is the female in 2000 happened to be a good 
one?) Inaccurate fixed effect estimates do affect accuracy of genetic parameter estimates as 
well. 
 
 
Analysis of an example data set  
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An appropriate model to describe this data would be a two-way cross classified model 
without interaction: 

yijk = b0 +  bi  +  bj  + eijk 
where 

yijk is an observation on the growth rate of calves 
b0 is the overall mean 
bi is an effect due to the age of dam of the calf (i = 1,…4) 
bj is an effect due to the breed of the calf (j=1,….3) 
eijk is the residual for each observation 

 
The model written in matrix notation is 

y = Xb + e 
The assumptions of the model are 

- there are no breed by age of dam interactions 
- all other effects were the same for all calves, eg. diet, age, cg 
- errors terms are independent and random variables identically distributed around a 

mean of 0 and a variance of σe
2. 

The expectation of y is 
E(y) = Xb 

and the variance of y  is  
V(y) = I σe

2  
where 

Calf ID Age of Dam Breed Growth Rate 
 (yr) (kg/day) 
 1 2 AN 2.10 
 2 3 AN 2.15 
 3 4 AN 2.20 
 4 5+ HE 2.35 
 5 5+ HE 2.33 
 6 2 HE 2.22 
 7 3 HE 2.25 
 8 3 HE 2.27 
 9 4 SM 2.50 
 10 5+ SM 2.60 
 11 2 SM 2.40 
 12 2 SM 2.45 
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Xb = 

1 1 0 0 0 1 0 0
1 0 1 0 0 1 0 0
1 0 0 1 0 1 0 0
1 0 0 0 1 0 1 0
1 0 0 0 1 0 1 0
1 1 0 0 0 0 1 0
1 0 1 0 0 0 1 0
1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 1
1 0 0 0 1 0 0 1
1 1 0 0 0 0 0 1
1 1 0 0 0 0 0 1
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Normal Equations 
The normal equations for GLS are 

 
 (X’V-1X)b = X’V-1y 

however as V(y) = I σe
2 then  

 
σe

-2 (X’X)b = σe
-2 X’y 

 
and the GLS equations reduce to those of OLS equations, ie. 

 
(X’X)b = X’y 

 
which in expanded matrix form is 

12 4 3 2 3 3 5 4
4 4 0 0 0 1 1 2
3 0 3 0 0 1 2 0
2 0 0 2 0 1 0 1
3 0 0 0 3 0 2 1
3 1 1 1 0 3 0 0
5 1 2 0 2 0 5 0
4 2 0 1 1 0 0 4
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Obtaining Solutions 
X’X is a positive semi-definite matrix with a rank of 6. The dependencies are that columns 
2, 3, 4 and 5 and then columns 6, 7 and 8 both sum to give column 1 and thus two 
constraints on the solution are needed. Letting b0 and b11 be then set to zero, a generalised 
inverse of X’X is equal to (X’X)-  which we will call G. 
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G = 

0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000
0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000
0 000 0 000 0 714 0 225 0 322 0 313 0 414 0 137
0 000 0 000 0 225 0 793 0194 0 339 0167 0 247
0 000 0 000 0 322 0 194 0 670 0172 0 396 0 216
0 000 0 000 0 313 0 339 0 172 0 551 0194 0128
0 000 0 000 0 414 0167 0

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . .

− − −
− − −
− − −

− − −
− − − . . . .

. . . . . . . .
396 0 194 0 524 0 141

0 000 0 000 0137 0 247 0 216 0128 0141 0 366− − −
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for which the corresponding solution vector is b̂  = (X’X)-X’y = GX’y; 
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However G above is one of several generalised inverses for X’X and thus there are several 
possible solution vectors. In fact there are an infinite number of possible solution vectors 
which are given by the formula, 
 
bo = (X’X)-X’y + (I - (X’X)-X’X)z where z is an arbitrary vector of constants. 
Estimable Functions 
 
By computing the expected value of the solution vector, the functions of true parameters 
that have been estimated by a particular generalised inverse can be determined. These 
solutions are estimable because the solution vector is a linear function of y which is 
always estimable.  
 
Estimable functions are unique regardless of the solution vector. Consider the function b̂ 12 - 
b̂ 11 (this function is obtained by multiplying the third row of the matrix of estimable function 
by b), which can be more generally written as 
 

k’ b̂  = (0  -1  1  0  0  0  0  0) b̂  =  b̂ 12 - b̂ 11 
 
If another solution vector is used, the same value will be produced for the same function. 
Thus one quick way to determine if a function is estimable is to multiply it by b and bo; if the 
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results differ then that function is not estimable. A further method to determine if a function is 
estimable is to check if 

 
ki’(X’X)-X’X = kj’ 

 
Variance of Estimable Functions 
 
The variance of an estimable function is given as 
 

V(k’ b̂ ) = k’V( b̂ )k 
 = k’V((GX’y)k 
 = k’GX’V(y)XG’k 
 = k’(X’X)-X’X(X’X)-’k σe

2 
and since k’(X’X)-X’X = k’, if k is estimable 

 = k’(X’X)-k σe
2 

 
So when k’ = (0  -1  1  0  0  0  0  0) and k’ b̂  = 0.052 then V(k’ b̂ ) = 
 

( )0 1 1 0 0 0 0 0

0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000
0 000 0 000 0 000 0 000 0 000 0 000 0 000 0 000
0 000 0 000 0 714 0 225 0322 0313 0 414 0137
0 000 0 000 0 225 0 793 0194 0339 0167 0 247
0 000 0 000 0322 0194 0670 0172 0 396 0 216
0 000 0 000 0 313 0339 0172 0 551 0194 0128
0 000 0 000

−
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− − −

− − −
−
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= 0.714 σe

2 

 
Similarly if a number of estimable functions are to be considered then 

K’ = 
0 1 0 1 0 0 0 0
0 1 0 0 1 0 0 0
1 1 0 0 0 1 0 0
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and  

V(K’b̂ )  =  K’(X’X)-K σe
2  = 

0 793 0194 0 339
0194 0 670 0172
0 339 0172 0 552
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The standard errors of the estimable functions are obtained as the square root of the 
variances of the estimable functions located on the diagonals above. 
In ASREML you can use ‘contrast’ to test hypothesis. 
 
Least Square Means  
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Least square means (LSM) are commonly used in scientific articles as they relate directly to 
the actual measurements of data and are thus readily understood. However least square 
means are not equal to the actual raw means but are estimable functions and as such are, of 
course, unique. In fact LSMs are simply estimators of the marginal means of different classes 
or subclasses that would be expected in a balanced design, for example 

 
Here the LSM for sex 1 corrected for year effects is 13.5 or alternatively the LSM for Year 
1 is 10.0 corrected for sex effects. In the same way least square means can be derived for 
the different sub-classes of each effect in the previous data corrected for all other effects 
through the use of regression coefficients. For instance the least square means for the 
different levels of the effect of age of dam would be 
 

 
These are not simply b̂ 0 + b̂ 1i , especially in this case as this is not an estimable function. 
Instead these means are estimating b̂ 0 + b̂ 1i + 1/3( b̂ 21 + b̂ 22 + b̂ 23). Alternatively the least 
square means for the different levels of breed effects are 

 
which are estimating b̂ 0 + 1/4( b̂ 11 + b̂ 12 + b̂ 13 + b̂ 14) + b̂ 2i. 
Exercises for linear models 
 
1 Revision questions  
 Write a fixed effect model for two independent variables 
 Give the expectation of the dependant variable (1st moment) 
 Give the variance of the dependant variable (2nd moment) 
   State the assumption of the model 
 
 
2 Regression Model: 
 

 sex 1 sex 2 LSM (Year) 
Year 1 11.0   9.0 10.0 
Year 2 16.0 12.0 14.0 

LSM (sex) 13.5 10.5 12.0 

Age of Dam L.S. Mean 
 2 2.247 
 3 2.299 
 4 2.329 
 5+  2.394 

 Breed L.S. Mean 
   Angus 2.176 
 Hereford 2.275 
Simmental 2.501 
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We have measured the litter size of a group of sows, and are interested in some effects on 
this trait, in particular the effect of the age of the sow, and the effect of fat depth at 
insemination. 
 
 single regression:  
 
y =  litter size pigs      [7      8     9     8     9     10     9   10   11    12] 
x = sow weight at insemination (kg)  [ 100 110 120 125 125 130 130 145 150 160]  
 
 multiple regression  

y  =  as before,  
x1 = as x before 

  x2 = fat depth at insemination (mm) [20 30 25 40 25 30 35 40 35 35] 
Estimate regression coefficients for linear regression models  
 (You may try also 2nd order regression if you like) 
 
 
3 Regression and class effects 
 
Consider the following data where fat depth was measured on bulls in two feeding regimes. 
The bulls were measured at different ages. 
Fat Depth (mm) Feeding Regime Age at measuring (Mo) 
20   Intensive  10 
20   Int   14 
19   Int   15   
24   Int   16 
24   Int   17 
25   Int   20 
26   Int   20 
19   Extensive  17 
19   Ext   19 
21   Ext   21 
20   Ext   23 
 
1) Estimate the effect of age on Fat Depth without consideration of feeding regime 
2) Estimate the same effect with consideration of feeding regime 
 


