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Chapter 5
Hypothesistesting in Linear Models

Julius van der Werf

Analysisof Variance

Anaysis of variance or ANOVA are the common way to test whether certain effect are
significant in linear modds. The method, introduced by RA. Fischer in the early 20"
century, is based on caculating sums of squares which provides a measure of variation.
Sums of squares are sandardized to ‘ mean squares by accounting for the number levels
(strictly by accounting for the degrees of freedom). An effect is defined based on a grouping
according to the various levels of that effect. Whether such an dlocation into grouping is
meaningful can be assessed by comparing the group differences with the random differences
that occur within groups.

There are 4 basic components of an ANOVA table, based on

= Totd sum of squares

= Sum of sguares due to the model
=  Sum of squares due to the mean
» Resdud sumsof squares.

As an example, we can take a smple mode with one main sire effect (3).
Yij=m+a + g

Assume N observations, with s sres, with N/s=n isthe number daughters per sre. Then, the
ANOVA tableisasfollows,

Source df Sum of Squares Mean Squares EMS
Mean 1 SSM SSM
Sires s1 SSA SSA/(s-1) ns&+sd
Error N-s SSE SSE/(N-9) S&
Tota N SST
Where
SST=yViy=8 4V (the latter holdsif V=)
i=1 j=1

y;j is an observation on the [ daughter of the " sire. The total sum of squares (SST) is
therefore the sum of each of the observations squared.

ssvi= YV UAV- ) UV-ly=(8 y)2/N=N* y2  (essumingV=1)

The mean sum of squaresis therefore N times the means squared.
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SA = y'VIX(X'VX)Y X' Vy=nd(y,-y )

i=1

The sum of squares due to aparticular effect (e.g. the Sre effect) istherefore the sum over dl
observations of the estimated (sire) effect in each observation squared (in baanced datathisisthe
difference between the progeny group mean of asre and the overdl mean).

The sum of squares dueto the totd modd is (incl. mean)
SR=y'V IX(X'VIX) X'Viy=p'X'V'1y

issmply the solution vector times the right hand side.

$E:é.é.(yij_yi,)z

=1 j=1

The sum of squares due to the residua (error) isthe sum over dl observations of the resdud
effect in each observation squared (this is the difference between the observation and its
group mean).

SSR- SSM

The coefficient of determination of the modd is R =
SST - SSM

Theis dso the squared correlation between predicted and observed data, or the proportion
of totd variation (besdes the mean) that is explained by the modd.

To get afee for variance-between and variance- within groups, and how the first relates to
resemblance (covariance) between observed values within a group , we look at an example.
Consider 3 repeated measures on each of five animals. Hence, observations are grouped by
animal, and we look at resemblance between repeated measurements.

Five animals are shown, each with 3 measurements.

Example data set 1.
Sheep No.: 1 2 3 4 5
Day 1 21 24 27 20 27
Day 2 22 26 30 19 24
Day 3 20 25 30 18 27
M eans.: 21 25 29 19 26
Example data set 2
Sheep No.: 1 2 3 4 5
Day 1 17 21 25 22 24
Day 2 20 29 28 16 22
Day 3 23 28 A 16 32
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[ Meanss | 20 | 26 [ 29 | 18 [ 26 |

By simply looking at the data we can already observe that
- thevariation of observed values on the same animal islarger in data set 2.
- theobservation on the same animal are more ‘alike’ in data set 1.
- thevariation of the meansisslightly larger in data set 2.

This*gut-feel’ about the data can be formally quantified with an analysis of variance.
We will perform this ANOV A based the exampl e data sets. We expect to find

- morerandom error in data set 2.

- alower repeatability in data set 2.

More detail about analysis of variance
What do the true effects ook like?

To help understand an analysis of variance, the following Tables demonstrate ‘ knowledge of
the underlying parameters’ In redlity we do not have this knowledge, but the example shows
that larger effects means more variance. It al'so shows how variance components reflect
‘amilarity’ (repeatability) of repeated performances.

Observed phenotypes P for each measure are the sums of permanent (P,) and temporary (Py)
effects P=P, + P,

We can call de temporary effects ‘measurement error’. We look again at the data, but now
with the underlying effects. The actual measurements (P) are shown in bold, the other
numbers are the underlying effects, and the means.

Consider again example data set 1, where the measurement error (P) islow:

ANIMAL: 1 2 3 4 5

Pp + Pt =P Pp + Pt =P Pp + Pt =P Po + Pt =P Pp + Pt =P
3Measurements | 22 -1 21 | 24 0 24 |27 0 27 |19 1 20 |25 2 27
each 22 0 22 |24 2 26 |27 3 30 |19 0 19 |25 -1 24
22 -2 20 |24 1 25 |27 3 30|19 -1 18 |25 2 27
MEANS.:
22 -1 21 |24 1 25 |27 2 29 |19 0 19 |25 1 26
Now consider example data set 2 where the measurement error (P,) is high:
ANIMAL: 1 2 3 4 5
Po + Pt =P Po + Pt =P Po + Pt =P Pp + Pt = P Pp + Pt = P
3Measurements | 22 -5 17 (24 -3 21 [27 -2 25 |19 3 22 |25 -1 24
each 22 -2 20 | 24 5 29 |27 1 28 |19 -3 16 |25 -3 22
22 1 23 | 24 4 28 (27 +7 34 |19 -3 16 |25 7 32
MEANS:
22 -2 20 | 24 2 26 |27 2 29 |19 -1 18 |25 1 26
We want to quantify differences between P variance Between groups S é

and differences between P; : variancesWithingroups S VZV

Analysis of Variance
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We want to get an estimate of the variance between groups, as we cannot messure the P,
effects directly (we cannot see Pp vaues - just phenotypic vaues P.

The variance of observed group means (i.e. means per animal) (21, 25, 29, 19 and 26 in
example data 1) is made up of the variance of mean permanent effects (s 25: 22,24, 27,
19, 25) plusone nth of the variance of mean temporary effects (s 2W/n ,-1,1,20,1).
This variance of observed group means is determined by taking the squared differences of
the group means (as a deviation from the overal mean), leading to the sums of squares due
to group effects. We divide these SS groups by the degrees of freedom for groups (equa
to the number of comparisons we can make between groups). We expect the means

sguares for groups to contain 3 times (because of 3 values per group) the variance due to
2

groups means, i.e. 3*(s é FSW)=s2 +352,
n

We can estimate the contribution of the variance of temporary effects within groups by
taking al deviations within groups (we estimate the group mean and take the deviation of
each record from each group mean. These deviations are cdled residual effectsand if we
square al these within group deviations, we obtain the residual sums of squares. If the
resdud sums of squares are divided by the number of resduas that we can compare (thisis
the degrees of freedom for the resdual) than we obtain an estimate of the resdua
variance: s2yyy  For thisexample:

Analysis of variance Example data set 1.

Effect Degr. of Free.  Sums of Squares Mean Squares Expected Mean
Squares

Mean 1 8640

Group effect 4 192 48 2 4 2c?

(Between groups) Su+ 3%

Residual 10 18 18 5?2

(Within groups) v

Total 15 8850

Hereis how thesefigures are calculated ...

1) sums of squares due to means: 15* 24 = 8640
2 sums of squares due to group differences:
3* (212+ 252+ 2% + 19 + 267) = 8832
corrected for mean:
3* ((21-24)2 + (25-24)2 + (29-24)2 + (19-24)2 + (26-24)2) = 192
or directly: 8832-8640 = 192

3) total sums of squares
212+ 222+ ... <all individual weightings squared> ... + 262 = 8850
4) residual sums of squares

total SS— SSgroups = 8850 — 8332 =18
notice that also: (-1)>+ 0+ (-2° + ...+ (2*= 18

The estimated variance components for example data set 1:

Between groups S E: 154
Within groups S a =18

Total varianceis Sg?+sy?=172
Repeatability = intra-class correlation = 15.4/17.2=0.895
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. 2. S \%v
Variance of the group means S B +—— =154+18/3=16
n
Analysis of Variance example data set 2:
Effect Degr.of Free. Sums of Squares Mean Squares Expected Mean
Squares
Mean 1 8640
2 2

Group effect 4 2544 63.6 s2 +3s?
(Between groups)
Residual 10 178 17.8 5?2
(Within groups) v
Total 15 8929
The estimated variance components for example data set 2:

Between groups S E: 153

Within groups S a =178

Total varianceis Sg?+sy2=331

Repeatability = intra-class correlation = 15.3/33.1=0.46

2
| 2_ 5w
Variance of the group means S B +——— =153+17.8/3=212
n

Comparing the two data sets.

The vaues of Pt are much larger in data set 2: we have larger measurement errors > The
repegtability is lower
The group means are nearly the same (essentiadly, we have the same animals), they are only
changed due to more variation in measurement error. The variance of the group meansisa
bit higher in data st 2.

Summary of the example

It isnot critical to be able to do dl these sums, they serve more as an illudration.
What isimportant is to get the concept:

The extent of differences between the groups and differences within the groups can be
quantified. We cdl these variance components

The variance components provide information about “how much dike’ different
observations within agroup are. If differences between groups are large in rdation to the
differences we observe within groups, than observations within the same groups are very
much ‘dike'. If the variance between groups s large, the observations within the group
have more covariance.

Since the covariance among related animas is due to genetic components, the between
group (full-sibs or half sbs) variance component can be used to determine genetic
variance.
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Hypothesistesting

Requirements: Assume that y has amultivariate distribution. Hypothesis testing requires
knowing the digtributions of sums of squares. A sum of squares, say Y’ Qy, will have a chi-
squared digtribution if QV isidempotent (i.e. this matrix times itsdf isequd to itsalf) andif y
iSMVN.

The mogt rdlevant sums of squares are:
SSrow = Y'Qry where Qr =V~
and  SSmos = Y Qrywhere Qg = VIX(X'V1X)X'V?
and  SSresqia =Y Qe where Qe= V1 - vIX(X'V1X)Xx'v?
It can be proven that SSR and SSE are independent chi-square variables (QrV Qg = 0).

Teding the modd:
The ratio of two independent central chi-square variables has an F-digribution The
adequacy of the whole modd istested as.

__ SRIr(X)
SSE/(N - r(X)

M

wherer(X) istherank of X and N is the total number of observations.

The whole modd is usudly sgnificant as it contains the meen (which is usudly sgnificantly
different from zero). It is more useful to test subsets of the parameter vector b. Various
functions of b can be tested. An hypothesistest consists of

Thenull hypothess

the dternative hypothes's

atest gatistic

aprobability leve or rgection region

A wbdpE

The null hypothesi's can be written as

H'b=c or: H'b-c=0
Where:

H mugt be of full column rank

H’b must be an estimable function

If these conditions are met, H'b istestable. Thetest satistic is

__ s/r(H)
SSE/(N - r(X))
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where s= (H'b-c)'(H'CH) (H'b-c)
ad C=XVX)?*
Example data set 5 (repeat)

Caf 1D Age of Dam Breed Growth Rate
(yr) (kg/day)
1 2 AN 2.10
2 3 AN 2.15
3 4 AN 2.20
4 5+ HE 2.35
5 5+ HE 2.33
6 2 HE 2.22
7 3 HE 2.25
8 3 HE 2.27
9 4 SM 2.50
10 5+ SM 2.60
11 2 SM 2.40
12 2 SM 245
The modd

Yik=bo+ b + by +e
where
Yijk IS an observation on the growth rate of caves
by isthe overdl mean
bi is an effect due to the age of dam of the cdlf (i = 1,...4)
b isan effect due to the breed of the cdf (j=1,....3)
e« Istheresdua for each observation
The modd written in metrix notetion is
y=Xb+e

LSequations (X’'X) =Xy, Withapossiblesolutionvectorisﬁ:(X’X)'X’y;

D
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Properties of Solutions
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While there are an infinite number of different solution vectors to the GL S equations the sum
of squares due to the modd is unique.

SSR = b'X'y=  yX (X'X)X'y= 64.737
Therefore when it comes to testing the modd, the values for mean squares and Ftests are

likewise independent of the solution vector.

Analysisof Variance
For the example data, the basic analysis of variance table is

Sour ce df Sumsof Squares | Means Square F - stat
Tota (SST) N-1=12 y'y = 64.740 5.3950 10295.8
Mean (SSM) 1 Ny? = 64.496 64.4960 123084.0°”
Mode (SSR) r=6 b' X'y = 64.7371 10.7895 20590.6"

Residua (SSE) N-r=6 | yy-bXy=0.0031 0.0005

The estimate of the error variance is given by the resdud means square (MSE). The test for
the adequacy of the moded is given by the caculation of an F-datistic for the mode!:
Fu = MSR/ MSE

which & P < 0.05, is highly sgnificant for this example. A sgnificant Ry indicates that the
solution vector is not anull vector and that the modd explains some of the mgjor sources of
vaiation. This is generdly sgnificant because the solution vector includes the mean of the
obsarvations, which is usudly different from zero. Alternatively the multiple correation
coefficient, R can be used to determine the amount of variation accounted for by the model
where

R

(SSR - SSM)/(SST - SSM)
= 0.987

The higher the vaue for R? the better the moddl, which in this case is a very adequate
description of the variation in caf growth rates.

Hypothesis Tests
As mentioned above the test of a models appropriateness is usudly significant because the
solution vector for the mode includes the mean of observations. Therefore when testing the
importance of a modd, it is of grester worth to test the sgnificance of the dements of b
other than the mean.

The General Linear Hypothesis Procedure
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Using the generalised linear hypothesis procedure, the test of SSR is directly partitioned into
sub- hypotheses which test the various estimable functions of b. For the current example the
two tests of interest would be

I) age of dam effects

ii) breed of caf effects

For the generd linear hypothesis, the null hypothesis for testing age of dam effects would be
H.'b=0where

-1 0 0 0 0 Oy
-100003

1
1
1 0 -1 0 0 0Of

0
0

z
I
BB

€, - by
Hr'b= g, - by
@Jﬂ - b14é
For H'b to be testable
i) H must have full row rank
i) Hb must be an esimable function (determined using methods described
previoudy)
and since these conditions hold, H;' b is testable.

The sum of squaresfor Hy'bis

st = (Hi'by (Hy (X’ X) Hy)™* Hy'b

and given
& 0.052y
) — é_ l.,j
Hi'b= & 0.0820
& 01474
then
s, = 0.0357

with 3 degrees of freedom, ie. m, - 1. The F-test is

Fi = 5
Se

22.7

which at the 0.05 levd means that the differences among age of dam groups is sgnificantly
different from zero and accounts for some of the variation explained by the modd.

Smilarly to test breed of cdf differences
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L _© 00001 -1 0g
" ® 000010 -
. &0.099)
D= ¢ 3058

& 0.325q

and the sums of squares for breed effects = 0.174 with 2 degrees of freedom. In summary
of the partitions of SSR for caf growth data

Sour ce df. | Sum of Squares | Means Square F-test

Model 6 64.737 10.7895 20590.6

Mean 1 64.496 64.4960 123084.0
Age of Dam 3 0.0357 0.0119 227"
Breed of Calf 2 0.174 0.0870 166.0"”

which shows that both eements of the moded are significantly different from zero and both
explain some of the variation in caf growth rates.

Reduction Notation

Another means of testing the gppropriateness of amodd and its dements is to examine the
ggnificance of the reduction in sums of squares after regressng y on each dement of the
modd separatdy. In the current example, the full modd could be written in component form
as

y= rriL+X1bi+X2b,-+e

with the different sub-models being

Modd 1. y = nil+ X +e
Modd 22 y = nmL+X;b+e
Modd 3: y = ml+e

The notation for the reductions of these models are:
R(m, by, b)) = thesumsof squares due to fitting the full model

R(m, by) = thereduction sums of squares dueto fitting mode 1
R(m, b)) = thereduction sums of squares due to fitting modd 2
R(mM = thereduction sums of squares due to fitting the mean

and for each of these models reductions in sums of squares for each of these models would
be obtained by congtructing OL S equations and then solving to give

R, b, b)) = 64.737
R(m, b)) = 64.701
RM, b)) = 64.563
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R(M) = 64.496

To test the null hypothesis l = O, ie. that the differences in age of dam effects are not
sgnificantly different from zero

R(m, bi, by) - R(m, by)
R(b [m, by)
0.0357

S

with 3 degrees of freedom. Similarly for the differencesin breed of caf

R(m, by , bJ) -R(m, by)
R |m, br)
0.174

S

with 2 degrees of freedom. Findly to test the sgnificance of the modd after correcting for
the mean gives

R(m, bi , by) - R(m)

R, b [m

0.241

While these results are the same as those obtained from the generd linear hypothess
procedure, the method requires that individua analyses of variance be performed for each
effect. In thisway, the former technique is a much smpler and easier method in that the sums
of squares for fixed effects and their sgnificance in the mode can be determined with greater

effidency.

S
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Exercisesfor linear model testing

1. AsmpleANOVA

To get somefed for why it is useful to caculate sums of square in the congtruction and
testing of gtatistical models for prediction, congder the following example.
Suppose we have 4 observations and a one-way classfication with 2 levels (A and B).
Cdculate the sum of squaresfor the totd, the mean, the modd and the resdua. Residud 1
refers to amode where only the mean isfitted and residua 2 to a modd where aso the

class effect isfitted.

Cdculate sums of squares ‘by hand’ based on the numbers the column.

class Observation | Mean Resdua 1 | Predicted Y | Residud 2
A 8
A 9
B 11
B 12
Sum of
Squares

2. Oneway classification

Given are data on three pig breeds. Estimate the breed effect

Y orkshire Landrace Petran
800 600
700

600

Test whether the breed effect is Sgnificant

Test whether the Y orkshire breed is Sgnificantly different from Landrace.

3. Two way classification

Given are data of daily growth of cattle in an experiment, where 3 feeding levels were
tested. Given are observations on some bulls.

Feeding leve
PastureQueendand  Feedlot Pasture Victoria
Breed Angus 200, 165 450, 460 300, 350
Hereford 426, 390, 430 310, 320, 330
Brahman 260, 240, 235 380, 450 280
St Gertrude 245, 220, 250,240 420, 440, 300

In aone-way andyss
Andyze the effect of breed. Test the generd effect
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Andyze the effect of feeding regime. Test generd effect.

Repest the previous andyssin a 2-way dassfication.
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