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Chapter 5 
Hypothesis testing in Linear Models 

Julius van der Werf 
 
Analysis of Variance 
 
Analysis of variance or ANOVA are the common way to test whether certain effect are 
significant in linear models. The method, introduced by R.A. Fischer in the early 20th 
century, is based on calculating sums of squares which provides a measure of variation. 
Sums of squares are standardized to ‘mean squares’ by accounting for the number levels 
(strictly by accounting for the degrees of freedom). An effect is defined based on a grouping 
according to the various levels of that effect. Whether such an allocation into grouping is 
meaningful can be assessed by comparing the group differences with the random differences 
that occur within groups.   
 
There are 4 basic components of an ANOVA table, based on 
 
§ Total sum of squares 
§ Sum of squares due to the model 
§ Sum of squares due to the mean 
§ Residual sums of squares. 
 
As an example, we can take a simple model with one main sire effect (ai). 

  yij = µ + ai + eij 

Assume N observations, with s sires, with N/s=n is the number daughters per sire. Then, the 
ANOVA table is as follows, 
 
Source  df Sum of Squares Mean Squares  EMS 
Mean  1  SSM  SSM    

Sires  s-1  SSA  SSA/(s-1)  n σs
2 + σe

2 

Error  N-s  SSE  SSE/(N-s)  σe
2 

Total  N  SST   
 

Where 
1'

s n
2
ij

i=1 j=1

SST  = y V y  y− = ∑∑   (the latter holds if V= I) 

 
yij is an observation on the jth daughter of the ith sire. The total sum of squares (SST) is 
therefore the sum of each of the observations squared. 

1 1 1 1 2 2
..' 1(1' 1) 1' ( ) /SSM  = y V V V y  y N N * y− − − − = ∑ =  (assuming V= I) 

 
The mean sum of squares is therefore N times the means squared.  
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The sum of squares due to the residual (error) is the sum over all observations of the residual 
effect in each observation squared (this is the difference between the observation and its 
group mean). 

The coefficient of determination of the model is R2 = 
SSR SSM
SST SSM

−
−

 

 
 
The is also the squared correlation between predicted and observed data, or the proportion 
of total variation (besides the mean) that is explained by the model. 
 
To get a feel for variance-between and variance- within groups, and how the first relates to 
resemblance (covariance) between observed values within a group , we look at an example. 
Consider 3 repeated measures on each of five animals. Hence, observations are grouped by 
animal, and we look at resemblance between repeated measurements. 
 

Five animals are shown, each with 3 measurements.   
 
Example data set 1: 

Sheep No.: 1 2 3 4 5 
Day 1 21 24 27 20 27 
Day 2 22 26 30 19 24 
Day 3 20 25 30 18 27 

Means: 21 25 29 19 26 
 
Example data set 2: 

Sheep No.: 1 2 3 4 5 
Day 1 17 21 25 22 24 
Day 2 20 29 28 16 22 
Day 3 23 28 34 16 32 

   1 1 1' ( ' ) '
s

2
i. ..

i=1

SSA  =  y V X X V X X V y n (  -  y y )− − − − = ∑  

 
The sum of squares due to a particular effect (e.g. the sire effect) is therefore the sum over all 
observations of the estimated (sire) effect in each observation squared (in balanced data this is the 
difference between the progeny group mean of a sire and the overall mean). 
 
The sum of squares due to the total model is (incl. mean) 
 
   1 1 1 1ˆ' ( ' ) ' ' 'SSR y V X X V X X V y b X V y− − − − −= =  
 
is simply the solution vector times the right hand side. 
 

   
SSE  =    ( y  -  y  )

i=1

s

j=1

n

ij i.
2∑ ∑
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Means: 20 26 29 18 26 
 
By simply looking at the data we can already observe that  

- the variation of observed values on the same animal is larger in data set 2. 
- the observation on the same animal are more ‘alike’ in data set 1. 
- the variation of the means is slightly larger in data set 2. 

 
This ‘gut-feel’ about the data can be formally quantified with an analysis of variance.  
We will perform this ANOVA based the example data sets. We expect to find  

- more random error in data set 2. 
- a lower repeatability in data set 2. 

 
 
More detail about analysis of variance  
 
What do the true effects look like?   
 
To help understand an analysis of variance, the following Tables demonstrate ‘knowledge of 
the underlying parameters’ In reality we do not have this knowledge, but the example shows 
that larger effects means more variance. It also shows how variance components reflect 
‘similarity’ (repeatability) of repeated performances.   
Observed phenotypes P for each measure are the sums of permanent (Pp) and temporary (Pt) 
effects: P = Pp + Pt 

 

We can call de temporary effects ‘measurement error’. We look again at the data, but now 
with the underlying effects. The actual measurements (P) are shown in bold, the other 
numbers are the underlying effects, and the means. 
 
Consider again example data set 1, where the measurement error (Pt) is low: 
ANIMAL: 1 2 3 4 5 
 Pp + Pt = P Pp + Pt = P Pp + Pt = P Pp + Pt = P Pp + Pt = P 

3 Measurements 22   -1   21 24    0   24 27    0   27 19    1   20 25    2   27 
each 22    0   22 24    2   26 27    3   30 19    0   19 25   -1   24 

 22   -2   20 24    1   25 27    3   30 19   -1   18 25    2   27 

MEANS:  
22   -1   21 

 
24    1   25 

 
27    2   29 

 
19    0   19 

 
25    1   26 

 
Now consider example data set 2 where the measurement error (Pt) is high: 
ANIMAL: 1 2 3 4 5 

 Pp + Pt = P Pp + Pt = P Pp + Pt = P Pp + Pt = P Pp + Pt = P 

3 Measurements 22   -5   17 24   -3   21 27   -2   25 19    3   22 25   -1   24 
each 22   -2   20 24    5   29 27    1   28 19   -3   16 25   -3   22 

 22    1   23 24    4   28 27   +7   34 19   -3   16 25    7   32 

MEANS:  
22   -2   20 

 
24    2   26 

 
27    2   29 

 
19   -1   18 

 
25    1   26 

 

We want to quantify differences between Pp:  variance Between groups 2
Bσ    

      and differences between Pt :  variances Within groups 2
wσ   

 
Analysis of Variance 
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We want to get an estimate of the variance between groups, as we cannot measure the Pp 
effects directly (we cannot see Pp values - just phenotypic values P.   
The variance of observed group means (i.e. means per animal) (21, 25, 29, 19 and 26 in 
example data 1) is made up of the variance of mean permanent effects (σ2B: 22, 24, 27, 
19, 25) plus one nth of the variance of mean temporary effects (σ2W/n ,  -1, 1, 2, 0, 1). 
This variance of observed group means is determined by taking the squared differences of 
the group means (as a deviation from the overall mean), leading to the sums of squares due 
to group effects. We divide these SS groups by the degrees of freedom for groups (equal 
to the number of comparisons we can make between groups). We expect the means 
squares for groups to contain 3 times (because of 3 values per group) the variance due to 

groups means, i.e. 3*(σ
σ

B
W
n

2
2

+ ) = 2
B

2
w 3σ+σ . 

 We can estimate the contribution of the variance of temporary effects within groups by 
taking all deviations within groups (we estimate the group mean and take the deviation of 
each record from each group mean. These deviations are called residual effects and if we 
square all these within group deviations, we obtain the residual sums of squares. If the 
residual sums of squares are divided by the number of residuals that we can compare (this is 
the  degrees of freedom for the residual) than we obtain an estimate of the residual 
variance: σ2W.   For this example: 
 
Analysis of variance Example data set 1. 
Effect Degr. of Free. Sums of Squares Mean Squares Expected Mean 

Squares 
Mean 1  8640   
Group effect 
(Between groups) 

4 192 48 2
B

2
w 3σ+σ  

Residual 
(Within groups) 

10  18 1.8 2
wσ  

Total 15  8850   
     
Here is how these figures are calculated … 
 
1) sums of squares due to means: 15 * 242 = 8640 
2) sums of squares due to group differences: 

   3 * (21² + 25² + 29² + 19² + 26²)  =  8832   
   corrected for mean: 
   3 * ((21-24)² + (25-24)² + (29-24)² + (19-24)² + (26-24)²)  =  192   

  or directly: 8832-8640 = 192 
3) total sums of squares 
     21² + 22² + … <all individual weightings squared> … + 26² = 8850 
4) residual sums of squares 
   total SS – SS groups = 8850 – 8832 = 18 
   notice that also: (-1)2 + 0 + (-2)2 + …..+ (2)2 = 18 
 
The estimated variance components for example data set 1: 

   Between groups    2
Bσ = 15.4   

   Within groups    2
wσ = 1.8   

   Total variance is     σB²
 
+ σw²

 
=

 
17.2  

 
   Repeatability = intra-class correlation =  15.4/17.2 = 0.895 
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   Variance of the group means  σ
σ

B
W
n

2
2

+  = 15.4 + 1.8/3 = 16 

  
 
 
 
  Analysis of Variance example data set 2: 
 Effect Degr.of Free. Sums of Squares Mean Squares Expected Mean 

Squares 
Mean 1   8640   
Group effect 
(Between groups) 

4   254.4 63.6 2
B

2
w 3σ+σ  

Residual 
(Within groups) 

10   178 17.8 2
wσ  

Total 15   8929   
     
The estimated variance components for example data set 2: 

   Between groups    2
Bσ = 15.3   

   Within groups     2
wσ = 17.8   

   Total variance is     σB²
 
+ σw²

 
=

 
33.1  

 
  Repeatability = intra-class correlation =  15.3/33.1 = 0.46 

  Variance of the group means σ
σ

B
W
n

2
2

+  = 15.3 + 17.8/3 = 21.2 

 
Comparing the two data sets: 
 
 The values of Pt are much larger in data set 2:  we have larger measurement errors à The 
repeatability is lower 
The group means are nearly the same (essentially, we have the same animals), they are only 
changed due to more variation in measurement error.  The variance of the group means is a 
bit higher in data set 2.  
 
Summary of the example 
It is not critical to be able to do all these sums, they serve more as an illustration. 
What is important is to get the concept: 
§ The extent of differences between the groups and differences within the groups can be 

quantified. We call these variance components.  
§ The variance components provide information about “how much alike” different 

observations within a group are. If differences between groups are large in relation to the 
differences we observe within groups, than observations within the same groups are very 
much ‘alike’. If the variance between groups is large, the observations within the group 
have more covariance.  

§ Since the covariance among related animals is due to genetic components, the between 
group (full-sibs or half sibs) variance component can be used to determine genetic 
variance. 

  



5: Hypothesis testing 

5-6 

Hypothesis testing 
 
Requirements: Assume that y has a multivariate distribution. Hypothesis testing requires 
knowing the distributions of sums of squares. A sum of squares, say y’Qy, will have a chi-
squared distribution if QV is idempotent (i.e. this matrix times itself is equal to itself) and if y 
is MVN.  
 
The most relevant sums of squares are: 
 
  SSTotal = y’QTy  where QT = V-1 
 
 and SSmodel = y’QRy where QR = V-1X(X’V-1

 X)-X’V-1 
 
 and SSResidual = y’QE where QE= V-1 - V-1X(X’V-1

 X)-X’V-1 
 

It can be proven that SSR and SSE are independent chi-square variables (QRVQE = 0). 
 
Testing the model: 
The ratio of two independent central chi-square variables has an F-distribution. The 
adequacy of the whole model is tested as: 
 

 
)(/(

)(/
XrNSSE

XrSSR
FM −

=  

 
where r(X) is the rank of X and N is the total number of observations. 
The whole model is usually significant as it contains the mean (which is usually significantly 
different from zero). It is more useful to test subsets of the parameter vector b. Various 
functions of b can be tested. An hypothesis test consists of 
 

1. The null hypothesis 
2. the alternative hypothesis 
3. a test statistic 
4. a probability level or rejection region 

 
The null hypothesis can be written as 
 
 H’b = c  or:  H’b-c = 0 
 
Where: 
 H must be of full column rank 
 H’b must be an estimable function 
 
If these conditions are met, H’b is testable. The test statistic is 
 

  
))(/(

)'(/
XrNSSE

Hrs
F

−
=   
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 where s = (H’β-c)’(H’CH)-1(H’β-c) 
 and C = (X’V-1X)-1 

Example data set 5 (repeat) 
 

 
The model 

yijk = b0 +  bi  +  bj  + eijk 
where 

yijk is an observation on the growth rate of calves 
b0 is the overall mean 
bi is an effect due to the age of dam of the calf (i = 1,…4) 
bj is an effect due to the breed of the calf (j=1,….3) 
eijk is the residual for each observation 

The model written in matrix notation is 
y = Xb + e 

 
LS equations:  (X’X) = X’y;  with a possible solution vector is b̂  = (X’X)-X’y; 
 

12 4 3 2 3 3 5 4
4 4 0 0 0 1 1 2
3 0 3 0 0 1 2 0
2 0 0 2 0 1 0 1
3 0 0 0 3 0 2 1
3 1 1 1 0 3 0 0
5 1 2 0 2 0 5 0
4 2 0 1 1 0 0 4

































b
b
b
b
b
b
b
b

0

11

12

13

14

21

22

23

































 = 

2782
917
6 67
4 70
7 28
6 45

11 42
9 95

.
.
.
.
.
.
.
.































    à   

0

11

12

13

14

21

22

23

b̂

b̂

b̂

b̂

b̂

b̂

b̂

b̂

 
 
 
 
 
 
 
 
 
 
 
 
 
  

 = 

0 000
0 000
0 052
0 082
0147
2105
2 204
2 430

.

.

.

.
.
.
.
.































 

 
Properties of Solutions  

Calf ID Age of Dam Breed Growth Rate 
 (yr) (kg/day) 
 1 2 AN 2.10 
 2 3 AN 2.15 
 3 4 AN 2.20 
 4 5+ HE 2.35 
 5 5+ HE 2.33 
 6 2 HE 2.22 
 7 3 HE 2.25 
 8 3 HE 2.27 
 9 4 SM 2.50 
 10 5+ SM 2.60 
 11 2 SM 2.40 
 12 2 SM 2.45 
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While there are an infinite number of different solution vectors to the GLS equations the sum 
of squares due to the model is unique. 

SSR = b’X’y= y’X’(X’X)-X’y = 64.737 
 
Therefore when it comes to testing the model, the values for mean squares and F-tests are 
likewise independent of the solution vector. 
 
Analysis of Variance 
For the example data, the basic analysis of variance table is 
 

 
The estimate of the error variance is given by the residual means square (MSE). The test for 
the adequacy of the model is given by the calculation of an F-statistic for the model: 

FM = MSR/ MSE 
 
which at P < 0.05, is highly significant for this example. A significant FM indicates that the 
solution vector is not a null vector and that the model explains some of the major sources of 
variation. This is generally significant because the solution vector includes the mean of the 
observations, which is usually different from zero. Alternatively the multiple correlation 
coefficient, R2 can be used to determine the amount of variation accounted for by the model 
where 
 

R2 = (SSR - SSM)/(SST - SSM) 
 = 0.987 

 
The higher the value for R2 the better the model, which in this case is a very adequate 
description of the variation in calf growth rates. 
 
 
Hypothesis Tests  
As mentioned above the test of a models appropriateness is usually significant because the 
solution vector for the model includes the mean of observations. Therefore when testing the 
importance of a model, it is of greater worth to test the significance of the elements of b 
other than the mean. 
 
The General Linear Hypothesis Procedure 

Source d.f Sums of Squares Means Square  F - stat 
Total (SST) 

 
N-1 = 12 y’y = 64.740 5.3950 10295.8 

Mean (SSM) 
 

1 N y2  = 64.496 64.4960 123084.0** 

Model (SSR) 
 

r = 6 b’X’y = 64.7371 10.7895 20590.6** 

Residual (SSE) 
 

N - r = 6 y’y - b’X’y = 0.0031 0.0005  
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Using the generalised linear hypothesis procedure, the test of SSR is directly partitioned into 
sub-hypotheses which test the various estimable functions of b. For the current example the 
two tests of interest would be 

i) age of dam effects 
ii) breed of calf effects 

 
For the general linear hypothesis, the null hypothesis for testing age of dam effects would be 
H1’b = 0 where 
 

H1’ = 
0 1 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 1 0 0 1 0 0 0

−
−

−

















 

and 

H1’b = 
b b
b b
b b

11 12

11 13

11 14

−
−
−

















 

For H’b to be testable 
i) H’ must have full row rank 
ii) H’b must be an estimable function (determined using methods described 

previously) 
and since these conditions hold, H1’b is testable.  
 
The sum of squares for H1’b is 
 

s1 = (H1’b)’(H1’(X’X)- H1)-1 H1’b 
and given 

H1’b = 
−
−
−

















0 052
0 082
0147

.

.
.

 

then 
s1 = 0.0357 

 
with 3 degrees of freedom, ie. n1 - 1. The F-test is 

 

F1 = 
( )

s
r H

1

1
'

e
2σ

 

 = 22.7 
 
which at the 0.05 level means that the differences among age of dam groups is significantly 
different from zero and accounts for some of the variation explained by the model. 
 
Similarly to test breed of calf differences 
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H2’ = 
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 1

−
−







, 

 

H2’b = 
−
−







0 099
0 325
.
.

 

 
and the sums of squares for breed effects = 0.174 with 2 degrees of freedom. In summary 
of the partitions of SSR for calf growth data 
 

 
which shows that both elements of the model are significantly different from zero and both 
explain some of the variation in calf growth rates. 
 
 
Reduction Notation 
Another means of testing the appropriateness of a model and its elements is to examine the 
significance of the reduction in sums of squares after regressing y on each element of the 
model separately. In the current example, the full model could be written in component form 
as 
 

y =  µ1 + X1 bi + X2bj + e 
 
with the different sub-models being 
 

Model 1: y = µ1 + X2bj + e 
Model 2: y =  µ1 + X1 bi + e 
Model 3: y =  µ1 + e 

 
The notation for the reductions of these models are: 

R(µ , bi , bj ) = the sums of squares due to fitting the full model 
R(µ , bj ) = the reduction sums of squares due to fitting model 1 
R(µ , bi ) = the reduction sums of squares due to fitting model 2 
R(µ) = the reduction sums of squares due to fitting the mean 

 
and for each of these models reductions in sums of squares for each of these models would 
be obtained by constructing OLS equations and then solving to give 
 

R(µ , bi , bj ) = 64.737 
R(µ , bj ) = 64.701 
R(µ , bi ) = 64.563 

Source d.f. Sum of Squares Means Square  F-test 
Model 6 64.737 10.7895 20590.6 
Mean 1 64.496 64.4960 123084.0 

Age of Dam 3 0.0357 0.0119 22.7** 
Breed of Calf 2 0.174 0.0870 166.0** 
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R(µ) = 64.496 
 
To test the null hypothesis bj = 0, ie. that the differences in age of dam effects are not 
significantly different from zero 
 

s1 = R(µ , bi , bj ) - R(µ , bj ) 
 = R(bi | µ , bj )  
 = 0.0357 

 
with 3 degrees of freedom. Similarly for the differences in breed of calf 
 

s2 = R(µ , bi , bj ) - R(µ , bi ) 
 = R(bj  | µ , bi ) 
 = 0.174 

 
with 2 degrees of freedom. Finally to test the significance of the model after correcting for 
the mean gives 

s3 = R(µ , bi , bj ) - R(µ ) 
 = R(bi , bj  | µ)  
 = 0.241 

While these results are the same as those obtained from the general linear hypothesis 
procedure, the method requires that individual analyses of variance be performed for each 
effect. In this way, the former technique is a much simpler and easier method in that the sums 
of squares for fixed effects and their significance in the model can be determined with greater 
efficiency. 
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Exercises for linear model testing 
 
1. A simple ANOVA 
To get some feel for why it is useful to calculate sums of square in the construction and 
testing of statistical models for prediction, consider the following example.   
Suppose we have 4 observations and a one-way classification with 2 levels (A and B). 
Calculate the sum of squares for the total, the mean, the model and the residual.  Residual 1 
refers to a model where only the mean is fitted and residual 2 to a model where also the 
class effect is fitted.  
Calculate sums of squares ‘by hand’ based on the numbers the column. 
 

class Observation Mean Residual 1 Predicted Y Residual 2 

A 8     
A 9     
B 11     

 
 

B 12     
Sum of 
Squares 

      

 
2. One way classification 
 
Given are data on three pig breeds. Estimate the breed effect 
 
 Yorkshire Landrace Pietrain 
 800  600  600 
 700  700 
 600 
Test whether the breed effect is significant 
Test whether the Yorkshire breed is significantly different from Landrace. 
 
3. Two way classification 
 
Given are data of daily growth of cattle in an experiment, where 3 feeding levels were 
tested. Given are observations on some bulls. 
 
   Feeding level 
   Pasture Queensland Feedlot  Pasture Victoria 
Breed Angus  200, 165  450, 460   300, 350 
 Hereford 220   426, 390, 430  310, 320, 330 
 Brahman 260, 240, 235  380, 450  280 
 St. Gertrude 245, 220, 250,240 420, 440,  300 
 
 
In a one-way analysis: 
Analyze the effect of breed. Test the general effect 
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Analyze the effect of feeding regime. Test general effect. 
 
Repeat the previous analysis in a 2-way classification. 


