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Chapter 7
| ntroduction to Mixed Models

Julius van der Werf

Linear models are commonly used to describe and andyse datain the biological and socia
sciences. The model needs to represent the sampling nature of the data.
The data vector contains measurements on experimenta units. The observations are random
varigbles that follow amultivariate distribution.
The modd usually conggts of factors. These are variables, either discrete or continuous,
which have an effect on the observed data. Different mode factors are:

Discrete factors or class variables such as sex, year, herd

Continuous factors or covariables such as age

Some factors are of specid interest to the researcher but other factors have to be included in
the modd smply because they explain a sgnificant part of the variation in the data and
reduce the resdud (unexplained) variaion. Such factors are often cdled ‘nuisance
variables.

Fixed and random effects

Another digtinction that is often used is that between fixed and random effects. A mixed
modd contains both fixed and random effects (hence ‘mixed').

The gatisticd world is somewhat divided here in more traditiona ‘frequentists that make
this didinction and Bayesans that find this distinction artificid and accommodate the
properties of different factors in their mode specification. However, it is still useful to try to
define the difference between fixed and random effects, and acknowledge this dispute. We
will discuss this didinction in more detall in a later lecture on Bayesan methods. With the
development of mixed modds and BLUP methodology, there has dways been a clear
digtinction between random and fixed effects, not in the least due to the influence of C.R.
Henderson, the founder of BLUP, and we' Il follow that approach here, in first instance.
Fixed Effects
- Effects for which the defined classes comprise dl the possible levels of interes,
€g. X, age, breed, contemporary group. Effects can be consdered as fixed
when the number of leves are rdatively smdl ad is confined to this number
after repeated sampling.
Random Effects
- Effects which have leves that are considered to be drawn from an infinite large
population of levels. Animal effects are often random. In repeated experiments
there maybe other animads drawn from the population.

The digtinction is o often determined by the purpose of the experiment. Do we want to

know the difference between these specific levels of a factor, or are we interested in how
large the differences between leves of afactor might generdly be. The effect of management
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groups could be fixed but arguments for considering them as random could be found just as
eedly.

Example A growth trial for anumber of animals from different age groups used several different

diets, locations and handlers.

In this case the number of levels for age, diet, location and handler could all conceptually be
the same for an infinite number of sampling events. On the other hand different animals would
be needed for each repeated sample as the same growth phase could not be repeated in the
same animal. Furthermore inferences might be made about diets or locations in general and in
this case these effects might be considered random since these could have been sampled from
an infinite number of levels. Therefore animals effects would be considered random while all
other effects would generally be fixed.

A checklist that can be used for deciding about fixed or random effects:
i) What are the number of levels?
small - fixed
large or near infinite - possibly random
i) Arethelevelsrepeatable?
yes - fixed
no - random
iii) Arethere conceptually and infinite number of such levels?
yes - possibly fixed
no - possibly random

iv) Areinferencesto be made about levels not included in the sampling?

yes - possibly random
no - possibly fixed

V) Were the levels of the factor determined in a non-random manner?
yes - possibly random
no - possibly fixed

A linear relationship can generdly be found to fit most biologica data adthough some
transformation may be required. Thus alinear model can generaly be used to describe data
All models contain a set of factors composed of three parts which additively affect the
observations or records of data:

i) theequation

i) expectations and variance covariance matrices of random variables

jii) assumptions, limitations and redtrictions

M odels:

Fixed Modd y=Xb +e
Random Modd y=Zu+e
Mixed Mode y=Xb+Zu+e
The Equation
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The eguation of amode defines the factors that will or could have an effect on an observed
trait. The generd linear modd equation in matrix form is

y=Xb+Zu+e (1)

where
yisann x 1 vector of n observed records
bisap x 1 vector of p levelsof fixed effects
uisaq x 1 vector of g levelsof random effects
eis ann x 1 vector of random, residua terms
X isaknowndesign matrix of order n x p, which relates the recordsiny to the fixed effectsinb
Z is aknown design matrix of order n x g, which relates the records iny to the random effects
inu

Equation (1) is generdly termed a mixed model as it contains both fixed and random
effects. While not specified directly, interactions between fixed effects are fixed, interactions
between random effects are random and interactions between fixed and random effects are
random. The mixed modd can be reduced to become a fixed effect modd by not including
Zu or arandom effects modd for which no fixed effects are fitted except the overal mean,
i.e. Xb = 1Im Inasense every modd isamixed mdd asp isusudly fixed and eis usudly
random.

Expectationsand Variance Covariance (VCV) Matrices

In genera the expectation of y is

9 b
Edu.=20_
S $05
e

which is dso known as the 1% moment. The 2 moments describe the variance-covariance
structure of y:

a0 _a&s 00
Ve~ %0 Ry ()

where G is a digperson matrix for random effects other than errors and R isthe digpersion
matrix of error terms, for which both are general square matrices assumed to be nork
sngular and positive definite, with eements that are assumed known.
We usudly write

V=2GZ +R

Assumptions, Limitationsand Restrictions
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This part of the modd identifies any differences between the operational and ideal models. It
may describe the sampling process and to which extend the assumptions that are made can
be expected to be true (e.g. about normality, random sampling, uncorrelated error terms,
equdly digributed error terms, etc).

Estimation Theory

Some ter minology:

Estimation: We don’t know those prior moments (means, variance-covariance, etc), we
estimate them. Estimating fixed effect, b;

Prediction: We know Variance, covariance, means to calculate other items we want to know.
We predict random effects, u;

Predictand: The quantity to be predicted;

Y =Xb +Zu+e uisthequantity we want to predict, it can be said to e a predictand,
Predictor: the function used to predict the predictand, alinear function of y;

Best: minimise the mean squared error of the predictor

E(G- u)? tominimised, | use the symbol ~ referring estimated or predicted, to distinguish it
from the true value, e.g. U is estimated or predicted value of the true value u.

Linear: set the predictor to be alinear function of v,

Unbiased: the expectation is the expectation of predictand, E(Q) = E(u).

or astronger criterion of unbiasedness: 0 = E(u| ().

We will briefly repeat aspect of the previous lecture on estimation o fixed effects, but now
keeping in mind that there are more random effects than just the resdud error (which is
usudly 11D)

Estimating Fixed Effects

Consder agenerd modd
y=Xb+ e
withE(y)=Xb and var(y) =V =var(e)

We want to estimate fixed effects in b and conduct hypothesis testing about the significance
of differences between the different levels of effects. Note that e is a vector with random
effects. They can be caused by severa random factors (e.g. anima and residud) and the
different levels may be corrdated (e.g. due to repeated measurements on the same animals).
Hence, var(e) maybe equd to V = ZGZ' +R.
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Ordinary Least Squares
The generd fixed effects modd in matrix formis

y=Xb+e ..(5)

For ordinary least squares (OLS), error terms in e are independently and identicaly
distributed random variables with a mean of zero and a variance of s ¢ such that var(y) =
var(e) = Iy s¢& where |y is adispersion matrix for n observations. Given that E(y) = Xb, and
the norma equations are X’ Xb = X’y providing the least square estimator of b:

b =X'X)*'X'y ...(6)

Thus the OL S approach assumes that al observations are uncorrdated and have a common
variance s . If esimates are derived when thisis not true then they are no longer ‘best’.

Deriving Estimates Using Generalised L east Squares
When the variance among observations is determined by more than uncorrelated residuals
with equd variance, we write more generdly var(e) = V where can be diagond:

U
u
u
Usd
U
y
W, H

[y

W, 0

D> (D> (D> (D> (D> (D>
o

Leading to weighted least squares (WLS): b = (X'VIX) X'V1Y

Alternatively VV might be non-diagona and contain variance components such that

2

Vv

n

D> (D> D> D> D> (D>
ao.onononononoy

where v; is the variance of the i"™ observation and ij are off diagond elements and are the
covariances between them. An example case would be for dbservations on groups of half
sbs such that there would be covariances between measurements due to common Sires, or
repested measurements with covariances between repested observations on the same
subject. In most genetic models there is a second random effect (besides error) and there
are covariances among the random terms (e.g. due to genetic relationships). Therefore V is
generdly not diagond in genetic andyss. This case is conventionaly known as generalised
least squares (GLS) where OLS and WLS are merely specid cases of GLS. The
generdised least squares criterion for smple linear regression is

Qs=Q=(y- Xb)'V(y-Xb)
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Minimisng Qg with respect to by and b leads to the appropriate normal equations of
X'VIX) b=X'V1Y

Determining a generdised inverse for X'V™X givesthe GLS estimates as
b= (X'VIX)y X’V (7

which is a generd equation for Best linear Unbiased Estimates of fixed effects modd in any
linear modd.

Note that GL S estimates are better than LS, as the covariance strcture among observations
has better been taken into account. Therefore, to estimate fixed effects in a trid where
animas maybe geneticdly related, it would be better to use amixed model tha a fixed modd

where individua anima effects including their covariances are ignore. Another good exanple
of possible covariances is anong repeated measurements on the same animas. Often,

nutritionists measure treatments on animas where the same anima is repeatedly measured.
Ignoring covariances among repested measurements on the same anima would provide a
too rosy picture on the accuracy of the estimates obtained (see exercise 1 for an illustration).

Best Linear Prediction (BLP) of random effects
Given the modd y=g+tu+te

And thefirst and second moments (without any assumption of normdity).

_au_emd Lo B_& C
eu—e _u e u- !
& ana i & Vi

Then minimising the mean squared error of prediction for G, , i.e it minimizes
S(u-()? achieved by
BLPU) = =m+CVi(y-m) (9

The best predictor of a predictand is the conditiona mean of predictor given data, y
It can be written as

E(uy).
For example, the milk yield of adaughter j of abull i isy;, it can expressed as
Yij= K +S+6;
where sisthe effect of the bull’ s breeding value on its progeny (i.e. s= BV/2), we can have
first and the second moments (Mean and Variance), that leadsto s and y; being jointly

digtributed with a bivariate normd density having mean and variance,
Without any assumption of normdlty.
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Where s Z isthe variance anong siresand s 2 isthe residua variance within a progeny

group of agre.

From the property of the bivariate norma distribution, we have the conditiona expectation

of s, given the men of itsprogeny Y,

E(s|Y,)=E(s)+Cov(s, ¥)[Var(¥)I" [V, —E(Y, )]
whichis

S
E [ Y\=— s
S 19"

S e

[V - E(¥.)]

Note again that normdlity is not required here. So our predictor of s is
~_ 2
S - r552+3e2 (y| n‘)

Where nisthe number of daughters of the bull i.

This equation can rewritten as

n — n —
= (V- m=——(V - rn)
n+S:/Ssz(y|. ) n+a (y|

-

Wherea = s 2/s 2 = (1-tP/4) | (If14) = (4-HP)/KP

Note that thisis the same regression of breeding vaue on information source asis applied in

selection index theory.

Mixed M odel Estimation
As presented previoudy the mixed linear modd in matrix formiis

y=Xb+Zu+e

Recdl that G isthe VCV matrix of u and R isthe VCV matrix of e such that

V=V(y)=V(Zu+e)=2ZGZ +R
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Note that if R was reduced to its smplest form, namely Is? and u was ignored, the mixed
model equation would reduce to the standard linear modd (5).

If G and R are known, estimates of b and the predicted value of u are
b= (X'VIX) X'Vl
0 =GZ'Vi(y- Xb)

which as a rexult of V given in (8 means that these effects have been estimated
smultaneoudy and thus

)] b isthe GLS solution for b aswell asits best linear unbiased etimator (BLUE)
i) U isthe best linear unbiased predictor (BLUP) of u

Henderson(1959) developed a set of equation that smultaneoudy generate BLUE(XDb)
and BLUP(u), these equation being caled mixed modd equaions. MME.

EX'RIX  X'R'Z 0épu_éx'Rlyl
é_, ! LUué u=eé_, a
&Z'R'X  Z'R'Z+Ggaly &Z' RV

Proof of MME to give BLUE and BLUP:
There are two subsets of equations:

X’ R'lx§ +X' R'ZQ =X’ Rly 9)
ZR*b +(Z R*Z+GY0 =7 Ry (10)
Subdtituting for 0 gives
X'RIXDb+X’ R'Z(Z' R'Z+GY)'Z R{y-Xb)=X’ Rly
X'RXb - X’ R'Z(Z R'z+GY'Z' R*Xb
=X'Rly- X' R'Z(Z R'z+G")'Z Ry
> X' (R- X' R'Z(Z R'Z+GY'Z RY XDb
=X' (R*- X' R'Z(Z R'Z+G"Y'Z RY)y
> X' ViXb =X Vly
whereV*' =R R'Z(z R'z+GY)'Z R*

This can be shown by proving that VV* =1 (Mrode, Appendix C)
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writingW = (Z' R'Z+G%)*
Vi=R- R'ZWZ'R*
and VvV =
ZGZ' (R-R'zwz' RY)) +R(R*- R'zZWZ RY =
ZGZ’R'+ RR ZGZR'ZWZ' R*+RR'ZWZ' R' =
ZGZR*'+1- Z(GZR'Z+1)WZ'R' =
ZGZR'+1- ZG(ZR'Z+GHYWZR*'=
ZGZR'+1- ZGW!'WZ'R'=
ZGZR'+1- ZGZR'=1
Thus showing that the mixed modd solution for b isa GLS estimate.
The proof that the MME provide a BLUP solution for u:

From (9) and (10), the MME give as solution:

(ZR'Z+GY 0=ZRY(y- Xb)
>  0=(ZR'Z+GYH 1 zZRYy- XDb)
> =W ZR(y- Xb)

Henderson (1963) proved that this is equal to the BLUP estimate GZ' V™ (y- X 6)
as  GZVy-Xb) =GZ (R RZWZ'RY (y- Xb)
= G(Z R ZR'ZWZ' RY) (y- Xb)
=G (- ZRZW) ZR (y- Xb)
=G (W'-Z R'Z)WZ'R(y- Xb)
=G (Z R'Z+GY- Z R'2)WZ'R* (y- Xb)
=(GZ RZ+1-GZ RZ)WZ' R (y- Xb)
= (1)WZ'R(y- Xb)
=WZ' R (y- Xb)
Hence, in the MME we estimate

N

BLUE (b)= b = (X’ VX)'X’ V'y isaGLSesimate, and
BLUP ()= 0= (Z R'Z+GY'Z RYy-XDb)
whichisequd to
GZ (ZGZ +RYYy-Xb)  =GZVy-Xb)

The solution for O isidentica to the selection index equation, except that b isreplaced by its

edimate b. Note the difference between edimating a fixed effect (GLS) and a random
effect (BLUP). The firs is estimated at its (corrected) mean whereas the second is
regressed towards zero, depending on the amount of information available (or better,
depending n the ratio of covariance and variance of the information used).
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Appendix:

Useful Identitiesfor Variances and covariances

(D)s(x,x)=s 2%
(2)s(x,a)=0
(3)slax y)=as,

B)sl@a+x).yl=s,

(6) s ZaX — aZS 2X

(N)s2(x-y)=s% +s? - 25,
(8)s(x+y)=s% +s? +25,,

(9sx.x-y)=s%-s,

(10)5[(X1+X2), (Y1 +YZ)] =S X1Y1 +Ss X1Y2 +5x2y1 +Sx2yz
(11)3[()(1' Xz)v(yl' YZ)] = ley1 -S X1Yo szyl +Sx2yz

Where x and y are variables and alis constant
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