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Chapter 7 
Introduction to Mixed Models 

Julius van der Werf 
 
 
Linear models are commonly used to describe and analyse data in the biological and social 
sciences. The model needs to represent the sampling nature of the data. 
The data vector contains measurements on experimental units. The observations are random 
variables that follow a multivariate distribution.  
The model usually consists of factors. These are variables, either discrete or continuous, 
which have an effect on the observed data. Different model factors are: 

• Discrete factors or class variables such as sex, year, herd 
• Continuous factors or covariables such as age  

 
Some factors are of special interest to the researcher but other factors have to be included in 
the model simply because they explain a significant part of the variation in the data and 
reduce the residual (unexplained) variation. Such factors are often called ‘nuisance 
variables’. 
 
Fixed and random effects 
 
Another distinction that is often used is that between fixed and random effects. A mixed 
model contains both fixed and random effects (hence ‘mixed’). 
 
The statistical world is somewhat divided here in more traditional ‘frequentists’ that  make 
this distinction and Bayesians’ that find this distinction artificial and accommodate the 
properties of different factors in their model specification. However, it is still useful to try to 
define the difference between fixed and random effects, and acknowledge this dispute. We 
will discuss this distinction in more detail in a later lecture on Bayesian methods. With the 
development of mixed models and BLUP methodology, there has always been a clear 
distinction between random and fixed effects, not in the least due to the influence of C.R. 
Henderson, the founder of BLUP, and we’ll follow that approach here, in first instance. 
Fixed Effects 

- Effects for which the defined classes comprise all the possible levels of interest, 
eg. sex, age, breed, contemporary group. Effects can be considered as fixed 
when the number of levels are relatively small and is confined to this number 
after repeated sampling. 

Random Effects 
- Effects which have levels that are considered to be drawn from an infinite large 

population of levels. Animal effects are often random. In repeated experiments 
there maybe other animals drawn from the population.  

 
The distinction is also often determined by the purpose of the experiment. Do we want to 
know the difference between these specific levels of a factor, or are we interested in how 
large the differences between levels of a factor might generally be. The effect of management 
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groups could be fixed but arguments for considering them as random could be found just as 
easily. 
 
Example A growth trial for a number of animals from different age groups used several different 

diets, locations and handlers .  
In this case the number of levels for age, diet, location and handler could all conceptually be 
the same for an infinite number of sampling events. On the other hand different animals would 
be needed for each repeated sample as the same growth phase could not be repeated in the 
same animal. Furthermore inferences might be made about diets or locations in general and in 
this case these effects might be considered random since these could have been sampled from 
an infinite number of levels. Therefore animals effects would be considered random while all 
other effects would generally be fixed. 

 
 
A checklist that can be used for deciding about fixed or random effects: 

i) What are the number of levels? 
  small   - fixed 
 large or near infinite - possibly random 

ii) Are the levels repeatable? 
     yes - fixed 
     no - random 

iii) Are there conceptually and infinite number of such levels? 
yes - possibly fixed 
no - possibly random 

 
iv) Are inferences to be made about levels not included in the sampling? 

yes - possibly random 
no - possibly fixed 

 
      v) Were the levels of the factor determined in a non-random manner? 

yes - possibly random 
no - possibly fixed 

 
A linear relationship can generally be found to fit most biological data although some 
transformation may be required. Thus a linear model can generally be used to describe data. 
All models contain a set of factors composed of three parts which additively affect the 
observations or records of data: 

i) the equation 
ii) expectations and variance covariance matrices of random variables 
iii)  assumptions, limitations and restrictions 

 
Models: 
 
Fixed Model    y = Xβ  + e   
 
Random Model    y = Zu + e   
 
Mixed Model    y = Xβ  + Zu + e   
 
 
The Equation 
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The equation of a model defines the factors that will or could have an effect on an observed 
trait. The general linear model equation in matrix form is 
 

y = Xb + Zu + e ...(1) 
 
 
where 

y is an n × 1 vector of n observed records 
b is a p × 1 vector of p levels of fixed effects 
u is a q × 1 vector of q levels of random effects 
e is  an n × 1 vector of random, residual terms  
X is a known design matrix of order n × p, which relates the records in y to the fixed effects in b  
Z is a known design matrix of order n × q, which relates the records in y to the random effects 

in u  
 
Equation (1) is generally termed a mixed model as it contains both fixed and random 
effects. While not specified directly, interactions between fixed effects are fixed, interactions 
between random effects are random and interactions between fixed and random effects are 
random. The mixed model can be reduced to become a fixed effect model by not including 
Zu or a random effects model for which no fixed effects are fitted except the overall mean, 
i.e. Xb = 1µ.  In a sense, every model is a mixed mdel as µ is usually fixed and e is usually 
random. 
 
Expectations and Variance Covariance (VCV) Matrices 
 
In general the expectation of y is 
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which is also known as the 1st moment. The 2nd moments describe the variance-covariance 
structure of y: 
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where G is a dispersion matrix for random effects other than errors and R is the dispersion 
matrix of error terms, for which both are general square matrices assumed to be non-
singular and positive definite, with elements that are assumed known. 
We usually write 
    V = ZGZ’ + R 
 
 
Assumptions, Limitations and Restrictions  



7: Introduction to mixed models 

7- 4 

This part of the model identifies any differences between the operational and ideal models. It 
may describe the sampling process and to which extend the assumptions that are made can 
be expected to be true (e.g. about normality, random sampling, uncorrelated error terms, 
equally distributed error terms, etc). 
 
 
Estimation Theory 
 
Some terminology: 
 
 
 Estimation: We don’t know those prior moments (means, variance-covariance, etc), we 
estimate them. Estimating  fixed effect, β; 
 
Prediction: We know Variance, covariance, means to calculate other items we want to know. 
We predict random effects, u; 
 
Predictand: The quantity to be predicted;  
 
Y = Xβ + Zu + e    u is the quantity we want to predict, it can be said to e a predictand,  
 
Predictor: the function used to predict the predictand, a linear function of y; 
 
Best: minimise the mean squared error of the predictor 
E( û u− )2

  to minimised, I use the symbol ~ referring estimated or predicted, to distinguish it 
from the true value, e.g. û  is  estimated or predicted  value of the true value u.   
 
Linear: set the predictor to be a linear function  of  y, 
 
Unbiased:  the expectation is the expectation of predictand, E( û ) = E(u). 
or a stronger criterion of unbiasedness: û = E(u| û). 
 
 
We will briefly repeat aspect of the previous lecture on estimation o fixed effects, but now 
keeping in mind that there are more random effects than just the residual error (which is 
usually IID) 
 
Estimating Fixed Effects  
 
Consider a general model   

y = Xb +  ε       
with E(y) = Xb     and      var(y) = V = var(ε)    

 
We want to estimate fixed effects in b and conduct hypothesis testing about the significance 
of differences between the different levels of effects. Note that ε is a vector with random 
effects. They can be caused by several random factors (e.g. animal and residual) and the 
different levels may be correlated (e.g. due to repeated measurements on the same animals). 
Hence, var(ε) maybe equal to V = ZGZ’+R. 
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Ordinary Least Squares 
The general fixed effects model in matrix form is 
 

y = Xb + e ...(5) 
 
For ordinary least squares (OLS), error terms in e are independently and identically 
distributed random variables with a mean of zero and a variance of σe

2 such that var(y) = 
var(e) = IN σe

2 where IN is a dispersion matrix for n observations. Given that E(y) = Xb, and 
the normal equations are X’Xb = X’y providing the least square estimator of β: 
     b̂  = (X’X)-1 X’y ...(6) 
 
Thus the OLS approach assumes that all observations are uncorrelated and have a common 
variance σe

2. If estimates are derived when this is not true then they are no longer ‘best’. 
 
Deriving Estimates Using Generalised Least Squares 
When the variance among observations is determined by more than uncorrelated residuals 
with equal variance, we write more generally var(e) = V where can be diagonal: 
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Leading to weighted least squares (WLS):  b̂  = (X’V-1X)- X’V-1Y 
 
Alternatively V might be non-diagonal and contain variance components such that 
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where v i is the variance of the ith observation and ij are off diagonal elements and are the 
covariances between them. An example case would be for observations on groups of half 
sibs such that there would be covariances between measurements due to common sires, or 
repeated measurements with covariances between repeated observations on the same 
subject. In most genetic models there is a second random effect (besides error) and there 
are covariances among the random terms (e.g. due to genetic relationships). Therefore V is 
generally not diagonal in genetic analysis. This case is conventionally known as generalised 
least squares (GLS) where OLS and WLS are merely special cases of GLS. The 
generalised least squares criterion for simple linear regression is 

QG = Q = (y- X b̂ )’V-1(y-X b̂ ) 
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Minimising QG with respect to β0 and β1 leads to the appropriate normal equations of 
 

(X’V-1X)  b̂ = X’V-1Y 
 

 Determining a generalised inverse for X’V-1X gives the GLS estimates as 
 

b̂ = (X’V-1X)- X’V-1Y ...(7) 
 
which is a general equation for Best linear Unbiased Estimates of fixed effects model in any 
linear model. 
Note that GLS estimates are better than LS, as the covariance strcture among observations 
has better been taken into account. Therefore, to estimate fixed effects in a trial where 
animals maybe genetically related, it would be better to use a mixed model tha a fixed model 
where individual animal effects including their covariances are ignore. Another good example 
of possible covariances is among repeated measurements on the same animals. Often, 
nutritionists measure treatments on animals where the same animal is repeatedly measured. 
Ignoring covariances among repeated measurements on the same animal would provide a 
too rosy picture on the accuracy of the estimates obtained (see exercise 1 for an illustration). 
 
Best Linear Prediction (BLP) of random effects 
 
Given the model y = µ + u + e 
 
And the first and second moments (without any assumption of normality). 

 
Then minimising the mean squared error of prediction for û , , i.e. it minimizes  
S(u- û )2  achieved by  
    BLP(u) = û  = µu +CV-1 (y –µy) (9) 
 
The best predictor of a predictand is the conditional mean of predictor given data , y 
It can be written as  
       E(u|y). 
 
For example, the milk yield of a daughter  j of a bull i  is yij, it can expressed as 
   
 yij= µ +si+eij 
 
where s is the effect of the bull’s breeding value on its progeny (i.e. s = BV/2), we can have 
first and the second moments (Mean and Variance), that leads to si and yi being jointly 
distributed with a bivariate normal density having mean and variance, 
Without any assumption of normality. 
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Where 2

sσ  is the variance among sires and 2
eσ  is the residual variance within a progeny 

group of a sire. 
 
From the property of the bivariate normal distribution, we have the conditional expectation 
of si, given the men of its progeny iy  
 
                           E(si| iy )=E(si)+Cov(si, iy )[Var( iy )]-1 [ iy   – E( iy .)]   
which is 

 
Note again that normality is not required here.  So our predictor of si is  

Where n is the number of daughters of the bull i. 
 
This equation can rewritten as 

  
Where α =  2

eσ / 2
sσ  = (1-h2/4) / (h2/4) = (4-h2)/h2 

 

Note that this is the same regression of breeding value on information source as is applied in 
selection index theory. 
 
 
Mixed Model Estimation 
 
As presented previously the mixed linear model in matrix form is  
 

y = Xb + Zu + e 
 
Recall that G is the VCV matrix of u and R is the VCV matrix of e such that  
 

V = V(y) = V(Zu + e ) = ZGZ’ + R ...(8) 
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Note that if R was reduced to its simplest form, namely Iσ2
e and u was ignored, the mixed 

model equation would reduce to the standard linear model (5).  
 
If G and R are known, estimates of b and the predicted value of u are 

 
b̂ = (X’V-1X)- X’V-1y   

 
 û  = GZ’V-1(y - Xb)   

 
which as a result of V given in (8) means that these effects have been estimated 
simultaneously and thus 
 
i)  b̂  is the GLS solution for b as well as its best linear unbiased estimator (BLUE) 
 
ii) û  is the best linear unbiased predictor (BLUP) of u 

 
Henderson(1959) developed a set of equation that simultaneously generate  BLUE(Xβ)  
and BLUP(u), these equation being called mixed model equations: MME. 
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Proof of MME to give BLUE and BLUP: 
There are two subsets of equations:        

X’R-1X b̂  +X’ R-1 Z û   =X’ R-1y  (9) 
Z’R-1X b̂  + (Z’ R-1 Z+G-1)û   = Z’ R-1y  (10)  

 
Substituting for û  gives  
 
X’R-1X b̂ +X’ R-1Z(Z’ R-1Z+G-1)-1Z’ R-1(y-X b̂ )=X’ R-1y  
 
X’R-1X b̂  - X’ R-1Z(Z’ R-1Z+G-1)-1Z’ R-1X b̂   
    
    = X’ R-1y - X’ R-1Z(Z’ R-1Z+G-1)-1Z’ R-1y 
 
à X’ ( R-1 - X’ R-1Z(Z’ R-1Z+G-1)-1Z’ R-1) X b̂   
 
    = X’ (R-1 - X’ R-1Z(Z’ R-1Z+G-1)-1Z’ R-1) y 
 
à  X’ V-1X b̂  = X’ V-1y    

 
where V-1 = R-1- R-1Z(Z’ R-1Z+G-1)-1Z’ R-1 

 
This can be shown by proving that VV-1 =I   (Mrode, Appendix C) 
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writing W =  (Z’ R-1Z+G-1)-1 

V-1 = R-1- R-1ZWZ’R-1 
and VV-1 = 

ZGZ’ (R-1- R-1ZWZ’ R-1 ) + R (R-1- R-1ZWZ’ R-1) = 
ZGZ’R-1 + R R-1-  ZGZ’R-1ZWZ’ R-1 + RR-1ZWZ’ R-1 = 
ZGZ’R-1 + I -  Z ( GZ’R-1Z + I) WZ’R-1 = 
ZGZ’R-1 + I -  ZG ( Z’R-1Z + G-1) WZ’R-1 = 
ZGZ’R-1 + I -  ZG W-1 WZ’R-1 = 
ZGZ’R-1 + I -  ZG Z’R-1 = I 

Thus showing that the mixed model solution for b is a GLS estimate. 
The proof that the MME provide a BLUP solution for u: 

 
From (9) and (10), the MME give as solution: 
 
 (Z’R-1Z+G-1)  û = ZR-1(y- X b̂ ) 
à û = (Z’R-1Z+G-1) -1 ZR-1(y- X b̂ ) 
à     = W ZR-1(y- X b̂ ) 

 
Henderson (1963) proved that this is equal to the BLUP estimate GZ’V-1(y- X b̂ ) 
as  GZ’V-1(y- X b̂ )  = GZ’ (R-1- R-1ZWZ’R-1) (y- X b̂ ) 
    = G(Z’R-1- ZR-1ZWZ’ R-1) (y- X b̂ ) 
    = G (I - Z’R-1ZW) Z’R-1 (y- X b̂ ) 
    = G (W-1 - Z’ R-1Z) WZ’R-1 (y- X b̂ ) 
    = G (Z’ R-1Z+G-1)- Z’ R-1Z) WZ’R-1 (y- X b̂ ) 
    = (G Z’ R-1Z + I - GZ’ R-1Z) WZ’R-1 (y- X b̂ ) 
    = ( I ) WZ’R-1 (y- X b̂ ) 
    = WZ’R-1 (y- X b̂ ) 
Hence, in the MME we estimate 
 
BLUE (b) = b̂  = (X’ V-1X)-1 X’ V-1y     is a GLS estimate, and 
BLUP (u)= û = ( Z’ R-1Z+G-1)-1Z’ R-1(y-X b̂ )    
 which is equal to 
  G Z’ (ZGZ’ + R)-1(y-X b̂ ) = GZ’V-1(y-X b̂ ) 
 
The solution for û is identical to the selection index equation, except that b is replaced by its 
estimate b̂ . Note the difference between estimating a fixed effect (GLS) and a random 
effect (BLUP). The first is estimated at its (corrected) mean whereas the second is 
regressed towards zero, depending on the amount of information available (or better, 
depending n the ratio of covariance and variance of the information used). 
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Appendix: 

 
Useful Identities for Variances and covariances 
 
(1) ( ) xx,x 2σ=σ  
(2) ( ) 0=σ a,x    
(3) ( ) xyay,ax σ=σ  

(4) ( ) xyabby,ax σ=σ  

(5) [ ] xyy),xa( σ=+σ  

(6) xax a 222 σ=σ  

(7) ( ) xyyxyx σ−σ+σ=−σ 2222  

(8) ( ) xyyxyx σ+σ+σ=+σ 2222  

(9) ( ) xyxyx,x σ−σ=−σ 2   

(10) ( ) ( )[ ]
221221112121 yxyxyxyxyy,xx σ+σ+σ+σ=++σ  

(11) ( ) ( )[ ]
221221112121 yxyxyxyxyy,xx σ+σ−σ−σ=−−σ  

Where x and y are variables and a is constant 
 
 


