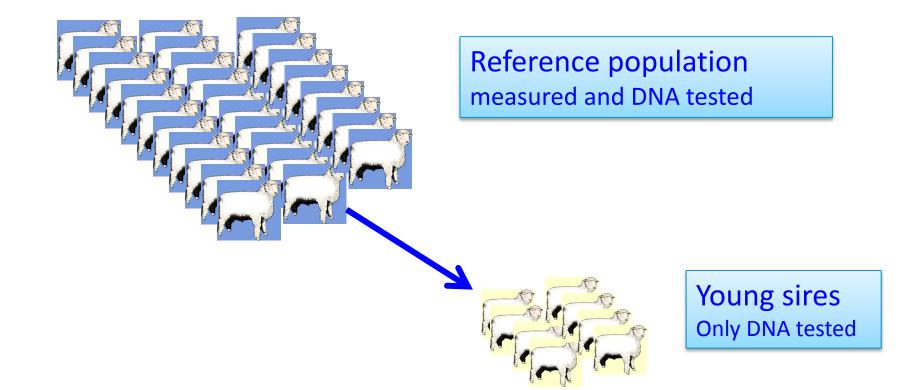


Accuracy of Genomic Prediction

Julius van der Werf and Sang Hong Lee

Genomic Prediction: basic idea



To predict a trait EBV at a young age,

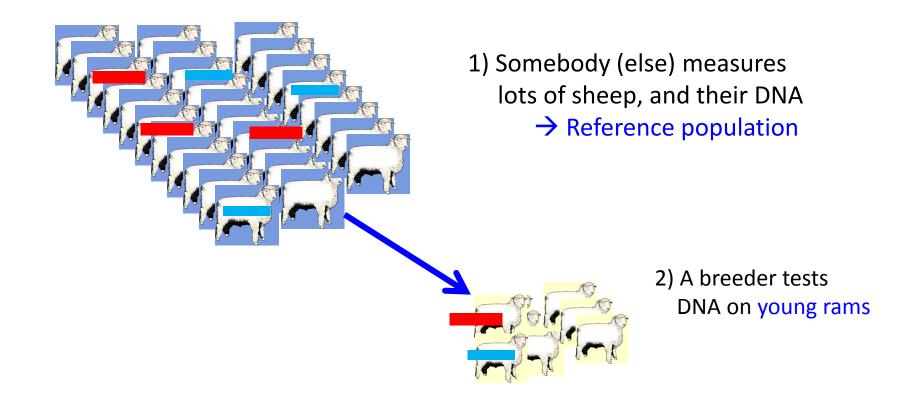
good for for: late traits

hard to measure traits

Genomic prediction accuracy

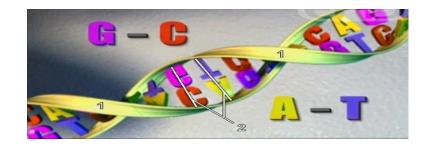
- Derive from the model, e.g. PEV from GBLUP mixed model equations
- Validate with other EBVs or phenotypes
 - Validation population
 - Cross-validation
- Predict in advance based on theory and assumptions about population

Genomic Prediction: basic idea



Illustrating (dis-)similarity of chromosome segments

Genotype information



Father

10100**1**110111**0**01110**0**1110011 01010**0**111000**1**10001**1**0011010

Chromosome segments are passed on

Mother

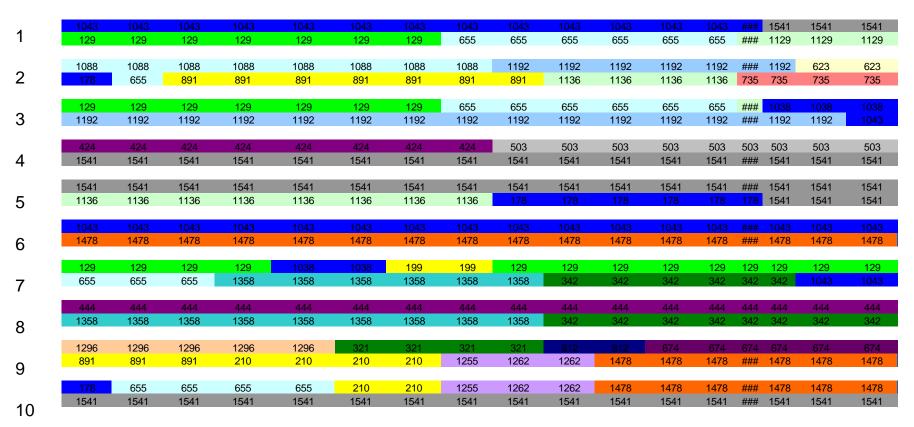
00010**0**111100**1**010110**0**110011 10101**1**101011**1**111111**1**111110

Progeny

10100**1**110111**0**01110**0**1110011 00010**0**111100**1**01011**0**0110011

A whole population of haplotypes

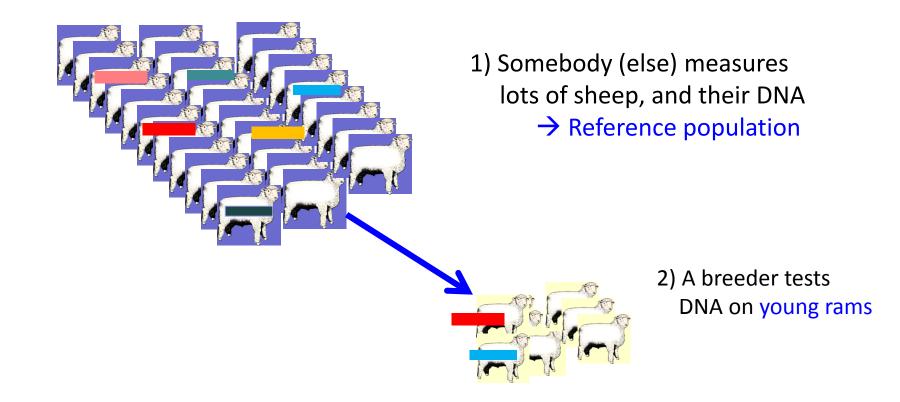
Individual



Within a population, members will share chromosome segments We can follow inheritance via SNPs

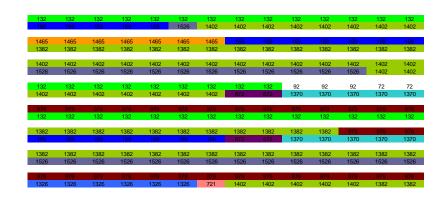
Degree of sharing can be represented in a genomic relationship (= observed based on SNPs) (similar to genetic relationship = expected based on pedigree)

Genomic Prediction: basic idea



Large diversity of segments → less accuracy

populations of haplotypes



Holstein Friesian, a pig/poultry nucleus

Limited diversity
Long segment sharing

Smaller N_e, longer segment sharing, fewer "effective loci"

Merino sheep, humans

More diversity
Short segment sharing
Sub populations



Not only recent N_e but also historic N_e is relevant

Genomic prediction accuracy

Design parameters

■ Effective population size (N_e)

■ Effective # chromosome segments (M_e)

■ Sample size in reference data (N)

■ Heritability (h^2)

Genomic prediction accuracy Using Daetwyler et al, 2008

Accuracy² of estimating a random effect = n / (n+ λ) $\lambda = V_e / V_a$

$$\lambda = V_e / V_a$$

If genome exists of M_e independently segregating 'effective chromosome segments'

And each segment has variance VA/ M_{e.} then accuracy² of estimating each segment

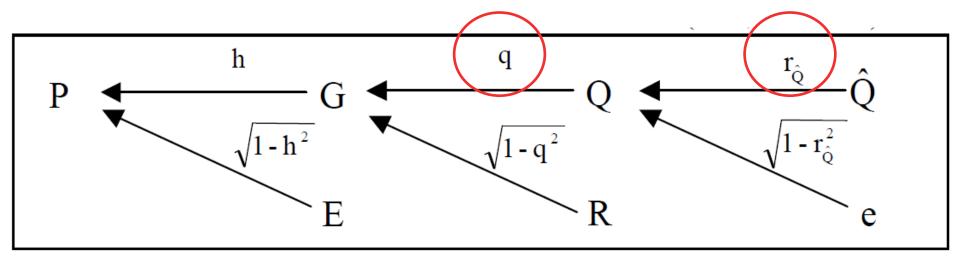
$$\frac{N}{N+V_e/(V_a/M_e)} = \frac{NV_a}{NV_a+V_eM_e} = \frac{h^2}{h^2+M_e/N}$$

$$r_{g,\hat{g}} = \sqrt{\frac{h^2}{h^2 + M_e/N}}$$

N = nr observations M_e = effective nr loci

Valid if "all genetic variance is captured by markers"

See also Dekkers 2007 (Path coefficient method)



Trait heritability = h^2

G = total BV

Q = genetic effects captured by marker(s)

R = residual polygenic effects

Model for phenotype: P = G + E

Model for BV: G = Q + R

Genomic prediction accuracy Using Goddard et al, 2011

Depends on

Proportion of genetic variance at QTL captured by markers | q² **i**)

i) Reliability of estimating marker effects

Accuracy =
$$\sqrt{(q^2. r^2_{Qhat})}$$

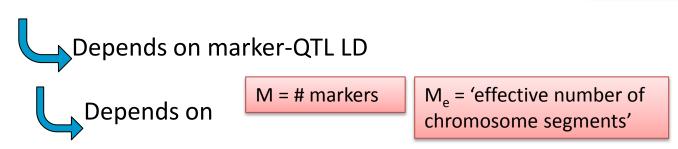
= $q. r_{Qhat}$

Genomic prediction accuracy Using Goddard et al, 2011

Depends on

) Proportion of genetic variance at QTL captured by markers

$$q^2 = M/(M_e + M)$$



Accuracy of estimating marker effects

Genomic prediction accuracy Using Goddard et al, 2011

Depends on

Proportion of genetic variance at QTL captured by markers $q^2 = M/(M_e + M)$ **i**)

$$q^2 = M/(M_e + M)$$

Depends on marker-QTL LD

Depends on

 M_e = 'effective number of chromosome segments'

i) Accuracy of estimating marker effects

$$r^2_{Qhat} = V_{qhat}/V_q = N/(N+\lambda)$$

 $\lambda = M_e/(q^2.h^2)$

Accuracy =
$$\sqrt{(q^2. r^2_{Qhat})}$$

= $q. r_{Qhat}$

With very many markers

Proportion of genetic variance at QTL captured by markers $q^2 = M/(M_e + M)$ **i**)

$$q^2 = M/(M_e + M)$$

$$q^2 = 1$$

i) Accuracy of estimating marker effects

$$r^2_{Qhat} = V_{qhat}/V_q = N/(N+\lambda) = h^2/(h^2 + M_e/N)$$

 $\lambda = M_e/h^2$ same as Daetwyler

Accuracy =
$$\sqrt{(r_{Qhat}^2)}$$

= r_{Qhat}

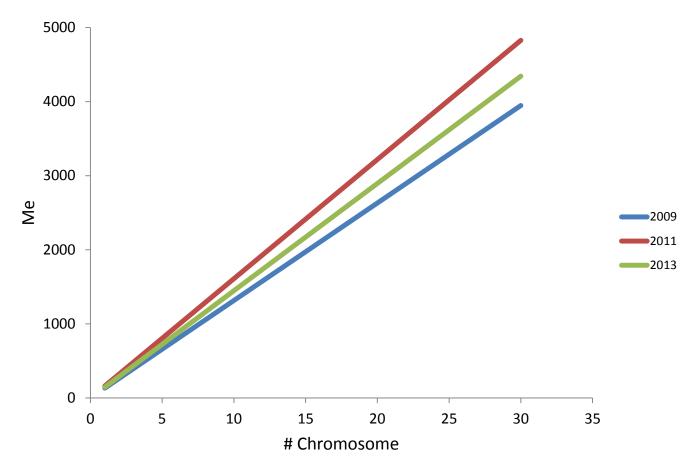
M_e is a function of N_e

• $M_e = 2N_eLN_{chr}/\ln(4N_eL)$ (Goddard 2009)

• $M_e = 2N_eLN_{chr}/ln(N_eL)$ (Goddard et al. 2011)

• $M_e = 2N_eLN_{chr}/\ln(2N_e)$ (Meuwissen et al. 2013)

Difference among the formulas



- $N_e = 500$, L=1M $h^2 = 0.5$ and N = 5000,
- accuracy = 0.62, 0.58, 0.60

Validating 'Effective number of segments'

Can use actual data on A and G to test this

Compare G and A matrices G - A = D + E

D =deviation in relationship at QTL

$$Var(D) = 1/M_e$$

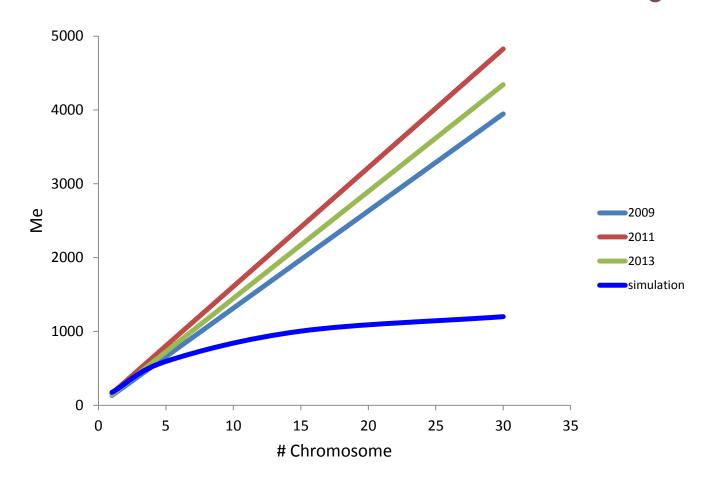
$$M_e = 1/\operatorname{var}(A_{ij})$$

Given genomic relationships (after collecting data), it is possible to empirically get M_e from the data

Simulation

- Coalescence gene dropping
 - $-N_e = 500$ for 500 generations
 - -L = 1 Morgan
 - $-N_{chr} = 30$
 - Recombination according to L
 - Mutation rate = 10E-08
 - -N = 3000 in the last generation
- Estimate A_{ij} and obtain empirical M_e

Difference from empirical M_e



 h^2 = 0.5 and N = 5000, accuracy = 0.62, 0.58, 0.60 vs. 0.82 (simulation)

Revisit the theory

$$M_e = \frac{N_{chr}}{[\ln(4N_eL+1)+4N_eL(\ln(4N_eL+1)-1)]/(8N_e^2L^2)+(1/3N_e)\times(N_{chr}-1)}$$

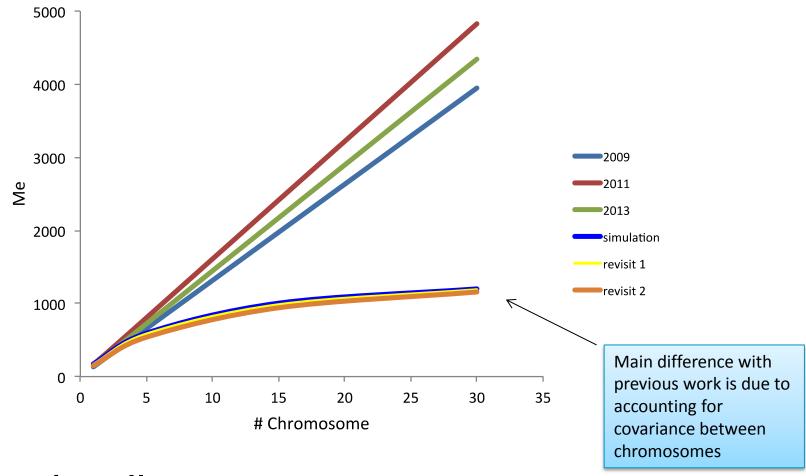
Assuming LD $r^2 = 1 / (1 + 4N_e \times c)$

$$M_e = \frac{N_{chr}}{[\ln(2N_eL+1)+2N_eL(\ln(2N_eL+1)-1)]/(4N_e^2L^2)+(1/3N_e)\times(N_{chr}-1)}$$

Assuming LD $r^2 = 1/(2 + 4N_e \times c)$

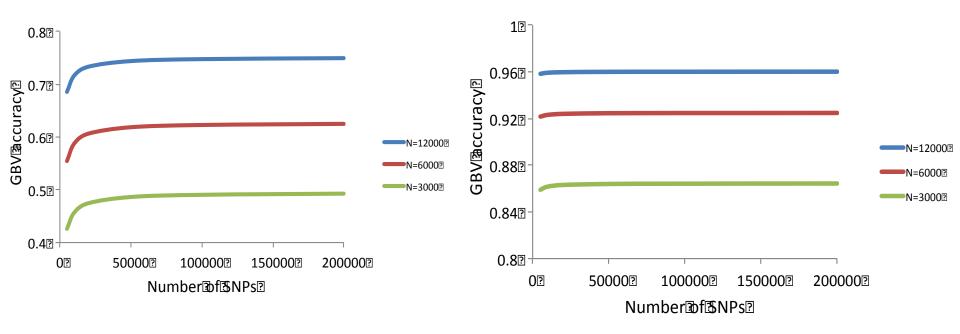
For more detail, see a bioRxiv paper Lee *et al*, 2016 doi: http://dx.doi.org/10.1101/054494

Empirical M_e and new formula



Agreed well

Genomic prediction accuracy



$$Ne = 1,000$$

$$Ne = 100$$

Expect very little improvement with denser markers

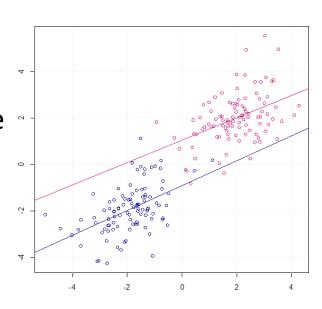
What effective population size?

Hanwoo? ~94 (Gondro)

Populations not homogeneous.

Within and between breed/line accuracies

Some accuracy due to population structure



How do we validate accuray?

- Validation population
 - EBV (based on progeny test)
 - Phenotype
 - Is it a homogeneous group?
- Cross-validation
 - Across families
 - Random(also within families)

Relationship with reference population

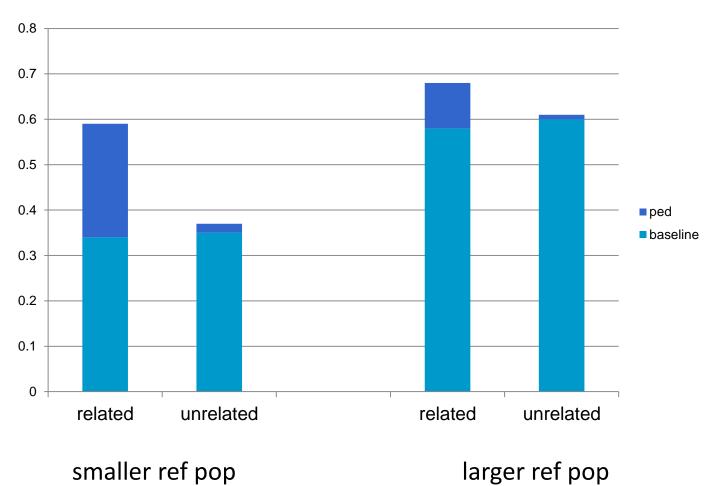
Clark et al 2011

Method	Close Ped 0 - 0.25 Genom 0.08 – 0.35	Distant 0 - 0.125 0.08 – 0.26	Unrelated 0 - 0.05 0.08 - 0.16
BLUP- Shallow pedigree	0.39	0.00	0.00
BLUP- Deep Pedigree	0.42	0.21	0.04
gBLUP	0.57	0.41	0.34

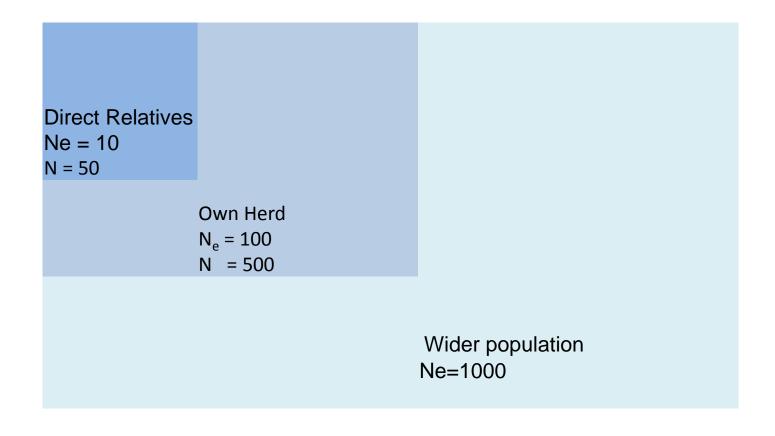
Additional accuracy from family info

'baseline accuracy': graphs predict 0.36 for Ne=100, N=1750, h²=0.3

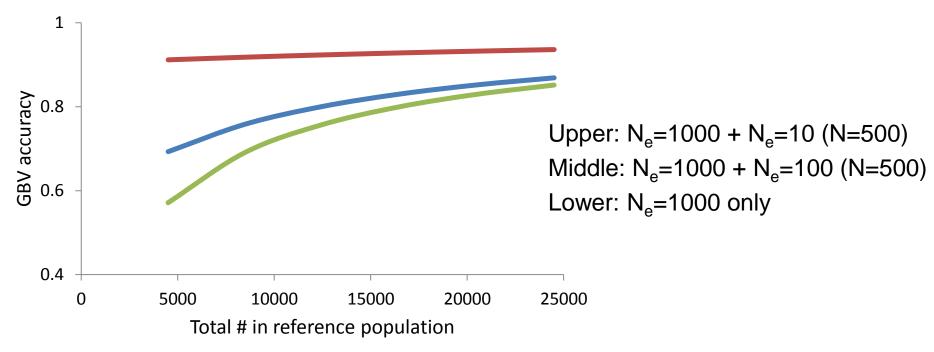
Relatedness matters more if the reference population is smaller



Using a stratified Reference population -populations are not homogeneous

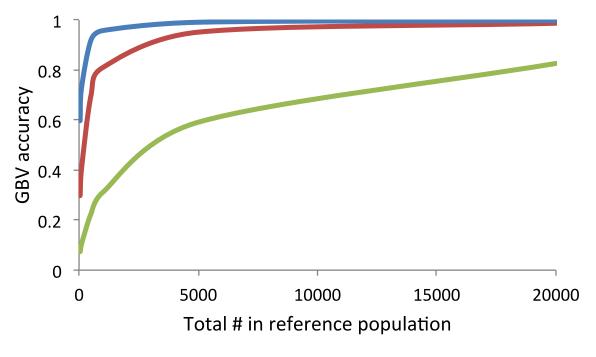


Relative importance



- \blacksquare h²=0.25
- Data from smaller N_e is more important

Sample availability



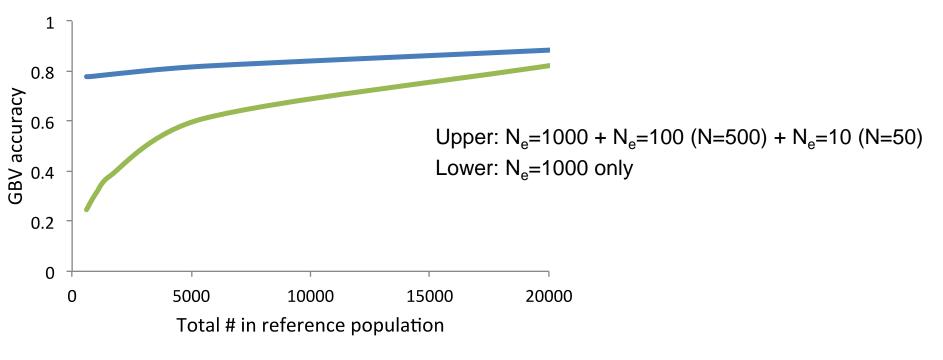
Upper: N_e=10 only

Middle: N_e=100 only

Lower: N_e=1000 only

- $h^2=0.25$
- N_e =10 would have < N = 100 (maximum acc. = 0.73)
- N_e =100 would have < N = 1,000 (maximum acc. = 0.81)
- N_e =1,000 can have N = 20,000 (acc. = 0.83)

Composite design



- \blacksquare h²=0.25
- Smaller N_e is important with smaller total N
- Benefit from large N_e too (0.78 to 0.89)

- Marker density
 - For beef cattle or sheep, very dense markers (e.g. 600K)
 may not be cost-effective, compared to 50K
 - For N_e = 1000, accuracy is similar between 50K and 600K
- Marker density is not a critical design parameter
 - > 50K with N_e = 1000 (livestock)
 - $> 200K \text{ with } N_e = 10,000 \text{ (human)}$
- But, it may matter with very large N_e
 - Multi-breeds or multi-ethnicities

- To maximise prediction accuracy
 - give a priority to genotype reference sample of smaller N_e,
 - e.g. close relatives > flocks (local, village) > states > country >...
 - When h² is lower, reference sample of smaller N_e is more important

Note that N_e can be changed, depending on the target sample

- To maximise prediction accuracy
 - Sample availability is much higher for larger N_e (in terms of sample size)
 - e.g. close relatives < flocks (local, village) < states < country < ...</p>
- Heterogeneous stocks are important as well
 - Unlimited source
 - Common SNP chips across breeds or ethnicities
 - Getting cheaper

- To maximise prediction accuracy
 - Composite design would be desirable
 - N_e =1000 (N=10,000) + N_e =100 (N=500) + N_e =10 (N=50)
- It may useful if one can get the expected prediction accuracy before conducting experiment. For example,
 - When adding a bunch of heterogeneous stocks to your data, how much the accuracy can be increased?
 - When adding a number of newly genotyped individuals, what accuracy can you expect?
 - And, what is the power?

■ MTG2

https://sites.google.com/site/honglee0707/mtg2

Given design parameters, MTG2 can provide the expected accuracy and power

See section 7 and 9 in the manual