

Predicting genetic changes with genomic information

Julius van der Werf

Issues

■ We want to combine genotype information with information from phenotypes and pedigree

■ Need to know 'additional value' of a genomic test

Need to predict genetic change when using genomics

Genomic breeding values

Good for:

Hard to measure, late in life traits HTML

- Lean meat yield, meat quality
- Reproductive Rate
- Adult Weight

But how does it change selection response?

- Overall
- For each trait

Potential benefits of GS - some principles

% increase in EBV accuracy (male 1yo) and genetic gain

	$h^2 = 0.$	$1 = r^2$	$h^2 = 0.3 = r^2$			
Trait Measurability	%∆ Асс	%∆ Gain	%∆ Асс	%∆ Gain		
< 1 year, both sexes	15	7	7	7		
> 1 year, both sexes	68	19	59	37		
>1 year, females only	119	27	112	52		
on Corr. Trait, r _g = 0.9	20	12	20	26		
on Corr. Trait, r _g = 0.5	67	50	76	86		

Potential benefits of GS - some principles

% increase in EBV accuracy (male 1yo) and genetic gain

	$h^2 = 0.$	$.1 = r^2$	$h^2 = 0$	$.3 = r^2$
Trait Measurability	%∆ Асс	%∆ Gain	%∆ Асс	%∆ Gain
< 1 year, both sexes	15	7	7	7
> 1 year, both sexes	68	19	59	37
>1 year, females only	119	27	112	52
on Corr. Trait, r _g = 0.9	20	12	20	26
on Corr. Trait, r _g = 0.5	67	50	76	86

These effects underestimated due to not accounting for Bulmer effect

How as additional response calculated

Selection index theory

- Index weights for various information sources
- Accuracies of EBV -overall index and per trait-
- Response -overall and per trait-

Selection Index Approach

Genomic Selection: Predict TBV with Accuracy = x

$$\rightarrow$$
 GS explains $x^2 \%$ of $V_A \rightarrow V_{qtl} = x^2 V_A$

Lande and Thompson, 1990 Genetics:

$$V_{polygenic} = (1-x^2)V_A$$

Models

Without GS:
$$V_{Pheno} = V_{AddGen} + V_{error}$$

With GS:
$$V_{Pheno} = V_{polygenic} + V_{qtl} + V_{error}$$

Predict from phenotypes pedigree Predict from DNA markers

Selection Index Approach

use info on various information sources: below for one trait only

Without GS:

Own perf.	Vp
Sire	Vp
Dam	Vp
FullSibs	etc {t-(1-t)/n}Vp
HalfSibs	{t-(1-t)/n}∨p
Progeny	{t-(1-t)/n}Vp

Va Va/2 Va/2 Va/2 Va/4 Va/2

With GS:

Own perf.	Vp-Vq						0
Sire		Vp-Vq					0
Dam			Vp-Vq				0
FullSibs	etc			{t-(1-t)/n}(Vp-Vq)		0
HalfSibs					{t-(1-t)/n}(Vp-Vo	1)	0
Progeny						{t-(1-t)/n}(Vp-Vq)	0
QTL	0	0	0	0	0	0	Vq

Va-Vq (Va-Vq)/2 (Va-Vq)/2 (Va-Vq)/4 (Va-Vq)/2 Vq

P-matrix

G-matrix

Selection Index Approach

Pseudo BLUP: Genomic Breeding value is an additional trait with h² =1

Without GS:

Va Va/2 Va/2 Va/2 Va/4 Va/2

With GS:

Own perf.	Vp						Vq
Sire		Vp					Vq/2
Dam			Vp				Vq/2
FullSibs	etc			$\{t+(1-t)/n\}(Vp)$			Vq/2
HalfSibs					$\{t+(1-t)/n\}(Vp)$		Vq/4
Progeny						$\{t+(1-t)/n\}(Vp)$	Vq/2
QTL	Vq	Vq/2	Vq/2	Vq/2	Vq/4	Vq/2	Vq

Va
(Va)/2
(Va)/2
(Va)/2
(Va)/4
(Va)/2
Vq

P-matrix

G-matrix

Selection index: example of 2 approaches

 $h^2 = 0.5$

own phenotype + GBV

GBV accuracy = 0.5

	_P			G (,BV)		b	varIndex	acc
Phenotype	1			0.5	а	0.5000	0.2500	0.7071
, , , , , , , , , , , , , , , , , , ,								
	Р			G				
Phenotype	1	0.25		0.5	a	0.3333	0.3333	0.8165
mBV	0.25	0.25		0.25	q	0.6667		
	Р			G				
Corrected Phenotype	0.75	0		0.25	u	0.3333	0.3333	0.8165
mBV	0	0.25		0.25	q	1.0000		
			ļ		· •			

Note weights on QTL info

MBV = GBV = "QTL"

Selection index: example of 2 approaches

- information from relatives

	Р			G
ownPoly	0.75	0	0.125	0.25
Own GBV	0	0.25	0	0.25
sirepoly	0.125	0	0.75	0.125

b		VarIndex	accuracy
0.31	43	0.3429	0.8281
1.00	00		
0.11	43		

Selection index: example of 2 approaches

information from relatives

	Р				G			b	VarIndex	accuracy	
ownPoly	0.75	0	0.125	0	0.25			0.3143	0.3429	0.8281	
ownGBV	0	0.25	0	0.125	0.25			1			
sirepoly	0.125	0	0.75	0	0.125			0.1143			
sireMBV	0	0.125	0	0.25	0.125			0			
	Р			G		_		b	varIndex	асс	
ownPoly	0.75	0	0.125	0.25			0.	3182	0.3409	0.825	57
ownGBV	0	0.25	0.125	0.25			0.	9545			
Sirepheno	0.125	0.125	1	0.25			0.	0909			

These models are not equivalent, not same accuracy

Conclusion: Relatives info needs to be 'corrected for markers'

Path coefficient method following

Dekkers Dec 2007 JABG

$$Q_{hat}$$
 = estimate of Q

Accuracy GBV = "
$$x$$
" = $q.r_{Qhat}$

Phenotypic correlation:
$$r_{P,Qhat} = h.x$$

Genetic correlation
$$r_{G,Qhat} = x$$

Conclusion: single trait

- Can include GBV as a correlated trait
 - And use standard software for selection index
- r_g = accurcay, same as 'x'
- $r_p = h.x$
- econ value for GBV = 0

- This is equivalent to treating it as an extra info source in a single trait multiple info sources approach:
 - EBV = f(own perf, dam, sire, sibs, progeny, GBV)

Extension to multiple traits

- The 'polygenic variance option is harder to implement
- Some traits may have GBV, others may not
- Need correlations....
 - between GBV and other trait phenotypes
 - between GBV and other trait genotypes
 - between different GBVs

Path coefficient method Dekkers Dec 2007 JABG

$$r_{P1G2} = h_1 r_{G1,G2}$$

 $r_{p1p1} = h_1 h_2 r_{G1,G2} + e_1 e_2 r_{E1,E2}$

Path coefficient method following Dekkers Dec

2007 JABG

$$r_{Gi,Qhatj} = r_{Q1hat} r_{Q1,Q2}$$

$$r_{\text{Pi,Qhatj}} = h_{\text{i}} r_{\text{Q1hat}}.r_{\text{Q1,Q2}}$$

$$r_{Qhati,Qhatj} = r_{Q1hat} \cdot r_{Q2hat} \cdot r_{Q1,Q2}$$

Summary

- Can use selection index approach
- GBV + polygenic (no correlation)
- Or: GBV + P, correlation is r²
- The latter is easier: Genomic BV as a correlated trait.

$$r_g$$
 = accuracy of GBV = 'x'
 r_p = h.x
Econ value of GBV = 0