

Accuracy of Genomic Prediction

Julius van der Werf and Sang Hong Lee

Genomic Prediction: basic idea

To predict a trait EBV at a young age,

good for for: late traits

hard to measure traits

Genomic Prediction: basic idea

Reference population measured and DNA tested

Young sires
Only DNA tested

What if reference population is

- Another breed
- Multi-breed
- Crossbreds
- Small
- Less related
- Sire Ebvs
- EBVs

How does genomic prediction work?

Markers in LD with QTL?

Genomic Relationships?

We know that GBLUP is equivalent to SNP-BLUP

 We observe that SNP BLUP and Bayesian methods are pretty similar → "infinitesimal model"

Genomic Prediction: GBLUP

Example:

Data on sire 1, his sons (2 and 3) and an unrelated individual (4)

want to predict 5 (also a son of 1) ← no data

A-matrix (pedigree-based)

1	0.5	0.5	0	0.5
0.5	1	0.25	0	0.25
0.5	0.25	1	0	0.25
0	0	0	1	0
0.5	0.25	0.25	0	1

G-matrix (DNA-based)

1	0.5	0.5	0.02	0.5
0.5	1	0.20	0.015	0.20
0.5	0.20	1	0.025	0.30
0.02	0.015	0.025	1	0.025
0.5	0.20	0.30	0.025	1

Variation in relationship (animal 5 with 2 and 3

Also a small relationship with 'unrelated'

Genomic Prediction: GBLUP

Example:

Data on sire 1, sons 2 and 3, 4 unrelated, want to predict 5

A-matrix (pedigree-based)

1	0.5	0.5	0	0.5
0.5	1	0.25	0	0.25
0.5	0.25	1	0	0.25
0	0	0	1	0
0.5	0.25	0.25	0	1

G-matrix (DNA-based)

1	0.5	0.5	0.02	0.5
0.5	1	0.20	0.015	0.20
0.5	0.20	1	0.025	0.30
0.02	0.015	0.025	1	0.025
0.5	0.20	0.30	0.025	1

$$\hat{u}_5$$
= 0.1136.y₁ + 0.0455.y₂ + 0.0455.y₃

GBLUP
$$\hat{g}_5 = 0.1135.y_1 + 0.0328.y_2 + 0.0591.y_3 + 0.00519.y_4$$

Genomic Prediction: GBLUP

Example:

Data on sire 1, sons 2 and 3, 4 unrelated, want to predict 5

A-matrix (pedigree-based)

1	0.5	0.5	0	0.5
0.5	1	0.25	0	0.25
0.5	0.25	1	0	0.25
0	0	0	1	0
0.5	0.25	0.25	0	1

G-matrix (DNA-based)

1	0.5	0.5	0.02	0.5
0.5	1	0.20	0.015	0.20
0.5	0.20	1	0.025	0.30
0.02	0.015	0.025	1	0.025
0.5	0.20	0.30	0.025	1

BLUP uses: Family Info

GBLUP uses: Family Info

Segregation within family

Info on 'unrelated'

Genomic prediction accuracy

- Derive from the model, e.g. PEV from GBLUP mixed model equations
- Validate with other EBVs or phenotypes
 - Validation population
 - Cross-validation
- Predict <u>in advance</u> based on theory and assumptions about population

Genomic Prediction: basic idea

Illustrating (dis-)similarity of chromosome segments

Genotype information

Father

10100**1**110111**0**01110**0**1110011 01010**0**111000**1**10001**1**0011010

are passed on

Mother

00010**0**111100**1**010110**0**110011 10101**1**101011**1**111111**1**111110

Chromosome segments

Progeny

10100**1**110111**0**01110**0**1110011 00010**0**111100**1**01011**0**0110011

A whole population of haplotypes

Individual

Within a population, members will share chromosome segments We can follow inheritance via SNPs

Degree of sharing can be represented in a genomic relationship (= observed based on SNPs) (similar to genetic relationship = expected based on pedigree)

Genomic Prediction: basic idea

Large diversity of segments → less accuracy

populations of haplotypes

Holstein Friesian, a pig/poultry nucleus

Limited diversity
Long segment sharing

Smaller N_e, longer segment sharing, fewer "effective loci"

Merino sheep, humans

More diversity
Short segment sharing
Sub populations

Not only recent N_e but also historic N_e is relevant

Genomic prediction accuracy

Design parameters

■ Effective population size (N_e)

■ Effective # chromosome segments (M_e)

■ Sample size in reference data (N)

■ Heritability (h^2)

Genomic prediction accuracy Using Daetwyler et al, 2008

Accuracy² of estimating a random effect = n / (n+ λ) $\lambda = V_e / V_a$

$$\lambda = V_e / V_a$$

If genome exists of M_e independently segregating 'effective chromosome segments'

And each segment has variance VA/ M_{e.} then accuracy² of estimating each segment

$$\frac{N}{N+V_e/(V_a/M_e)} = \frac{NV_a}{NV_a+V_eM_e} = \frac{h^2}{h^2+M_e/N}$$

$$r_{g,\hat{g}} = \sqrt{\frac{h^2}{h^2 + M_e/N}}$$

N = nr observations M_e = effective nr loci

Valid if "all genetic variance is captured by markers"

See also Dekkers 2007 (Path coefficient method)

Trait heritability = h^2

G = total BV

Q = genetic effects captured by marker(s)

R = residual polygenic effects

Model for phenotype: P = G + E

Model for BV: G = Q + R

Depends on

Proportion of genetic variance at QTL captured by markers q² **i**)

i) Reliability of estimating marker effects

$${\rm r^2_{Qhat}}$$

Accuracy =
$$\sqrt{(q^2. r^2_{Qhat})}$$

= $q. r_{Qhat}$

Depends on

) Proportion of genetic variance at QTL captured by markers

$$q^2 = M/(M_e + M)$$

i) Accuracy of estimating marker effects

Depends on

i) Proportion of genetic variance at QTL captured by markers

$$q^2 = M/(M_e + M)$$

Depends on marker-QTL LD

Depends on

M_e = 'effective number of chromosome segments'

i) Accuracy of estimating marker effects

$$r^{2}_{Qhat} = V_{qhat}/V_{q} = N/(N+\lambda)$$
$$\lambda = M_{e}/(q^{2}.h^{2})$$

Accuracy =
$$\sqrt{(q^2. r^2_{Qhat})}$$

= $q. r_{Qhat}$

With very many markers

Proportion of genetic variance at QTL captured by markers $q^2 = M/(M_e + M)$ **i**)

$$q^2 = M/(M_e + M)$$

$$q^2 = 1$$

i) Accuracy of estimating marker effects

$$r^2_{Qhat} = V_{qhat}/V_q = N/(N+\lambda) = h^2/(h^2 + M_e/N)$$

 $\lambda = M_e/h^2$ same as Daetwyler

Accuracy =
$$\sqrt{(r^2_{Qhat})}$$

= r_{Qhat}

Validating 'Genomic Prediction Accuracy'

More data is always good But does it increase accuracy as expected?

x-fold increase in data

What effective population size?

Kijas et al 2012

Sampling?

Populations not homogeneous.

Within and between breed/line accuracies

Some accuracy due to population structure

Summary so far

- Theory exists to predict genomic prediction accuracy in advance: depends on nr. effective segments, nr records
- Relies on assumptions regarding effective population size
- And some (unclear) theory about effective nr of loci
- Ignores heterogeneity of populations and relationships
- We observe more inital acc and less increase with more data

How to derive the effective number of loci?

M_e is a function of N_e

•
$$M_e = 2N_eLN_{chr}/\ln(4N_eL)$$
 (Goddard 2009)

•
$$M_e = 2N_eLN_{chr}/ln(N_eL)$$
 (Goddard et al. 2011)

• $M_e = 2N_eLN_{chr}/\ln(2N_e)$ (Meuwissen et al. 2013)

Difference among the formulas

Example: $N_e = 500$, L=1M

 $h^2 = 0.5$ and N = 5000, \rightarrow accuracy = 0.62, 0.58, 0.60

Validating 'Effective number of segments'

Can use actual data on A and G to test this

Compare G and A matrices G - A = D + E

D =deviation in relationship at QTL

$$Var(D) = 1/M_e$$

$$M_e = 1/\mathrm{var}(A_{ij})$$

Given genomic relationships (after collecting data), it is possible to empirically get M_e from the data

Simulation

- Coalescence gene dropping
 - $-N_e = 500$ for 500 generations
 - -L = 1 Morgan
 - $-N_{chr} = 30$
 - Recombination according to L
 - Mutation rate = 10E-08
 - -N = 3000 in the last generation
- Estimate A_{ij} and obtain empirical M_e

Difference from empirical M_e

 h^2 = 0.5 and N = 5000, accuracy = 0.62, 0.58, 0.60 vs. 0.82 (simulation)

Revisit the theory

$$M_e = \frac{N_{chr}}{[\ln(4N_eL+1)+4N_eL(\ln(4N_eL+1)-1)]/(8N_e^2L^2)+(1/3N_e)\times(N_{chr}-1)}$$

Assuming LD $r^2 = 1 / (1 + 4N_e \times c)$

$$M_e = \frac{N_{chr}}{[\ln(2N_eL+1) + 2N_eL(\ln(2N_eL+1)-1)]/(4N_e^2L^2) + (1/3N_e)\times(N_{chr}-1)}$$

Assuming LD $r^2 = 1/(2 + 4N_e \times c)$

For more detail, see a bioRxiv paper Lee et al, 2016 doi: http://dx.doi.org/10.1101/054494

Empirical M_e and new formula

Agreed well

Genomic prediction accuracy Effect of marker density

$$Ne = 1,000$$

$$Ne = 100$$

Expect very little improvement with denser markers

What effective population size?

Holstein Friesian < 100

Merino Sheep ~1000

Populations not homogeneous.

Within and between breed/line accuracies

Some accuracy due to population structure

How do we validate accuray?

- Validation population
 - EBV (based on progeny test)
 - Phenotype
 - Is it a homogeneous group?
- Cross-validation
 - Across families
 - Random(also within families)

Main questions

 How many records are needed in the reference population to achieve a certain accuracy?

But some important sub questions:

- What if you are more related to the reference?
- the value of own herd/flock versus the 'general' reference population

Relationship with reference population

Clark et al 2011

Method	Close Ped 0 - 0.25 Genom 0.08 – 0.35	Distant 0 - 0.125 0.08 – 0.26	Unrelated 0 - 0.05 0.08 - 0.16	
BLUP- Shallow pedigree	0.39	0.00	0.00	
BLUP- Deep Pedigree	0.42	0.21	0.04	
gBLUP	0.57	0.41	0.34	

Additional accuracy from family info

'baseline accuracy': graphs predict 0.36 for Ne=100, N=1750, h²=0.3

Relatedness matters more if the reference population is smaller

(hypothesis)

A reference population may have relatives

Relatives Wider population

'Relatedness' can be represented by effective size

Hayes et al 2009

Information from different subsets can be combined

Calculate overall accuracy using selection index

$$GBV = \Sigma b_i GBV_i$$

Acc = 0.31

Using a stratified reference population -populations are not homogeneous

Using a stratified reference population -populations are not homogeneous

Using a stratified reference population -populations are not homogeneous

Calculate overall accuracy using selection index

$$GBV = \Sigma b_i GBV_i$$

Acc = 0.42

N	Ε ₁	=	1	0	0	0
•	-1		_	_	_	_

	Value of information source			GBV accuracy		
N_1	breed (N1)	flock (400)	relatives (50)	all info	breed only	diff
2,000	16%	52%	21%	0.43	0.22	95%
5,000	31%	39%	15%	0.47	0.32	48%
10,000	45%	26%	10%	0.53	0.42	26%

Relatedness matters more if the reference population is smaller

hypothesis confirmed

Van der Werf AAABG 2011

NE ₁ = 1000							
	,	Value of information source			GBV accuracy		
N_1		reed (N1)	flock 400	relatives 50	all info	breed only	diff
2,000	1	16%	52%	21%	0.43	0.22	95%
5,000	3	31%	39%	15%	0.47	0.32	48%
10,000	۷	45%	26%	10%	0.53	0.42	26%
N_1	_	reed (N1)	flock 100	relatives 10	all info	breed only	diff
2,000	2	18%	36%	48%	0.28	0.21	36%
5,000	Е	58%	19%	68%	0.36	0.31	15%

79%

11%

With fewer relatives the reliance on the reference population increases

0.41

7 %

0.45

10,000

79%

$NE_1 = 1000$							
		Value of information source			GBV accuracy		
N_1		reed (N1)	flock (400)	relatives (50)	all info	breed only	diff
2,000		16%	52%	21%	0.43	0.22	95%
5,000	,	31%	39%	15%	0.47	0.32	48%
10,000	4	45%	26%	10%	0.53	0.42	26%
$NE_1 = 200$)						
N_1	b	reed (N1)	flock (400)	relatives (50)	all info	breed only	diff
2,000	4	45%	26%	10%	0.53	0.45	18%
5,000		62%	12%	5%	0.64	0.60	7%
10,000		72%	5%	2%	0.74	0.72	3%

With less diverse populations the relatives matter a lot less

NE - 1000

The effect of a larger reference population.

The effect of denser marker panels

No relatives

With relatives

Conclusion

- Theory exists to predict genomic prediction accuracy in advance: depends on population diversity, nr records
 - Reference populations are heterogeneous, with closer as well as distant relatives
 - Relatives and flock/herd mates will increase accuracy and decrease reliance on wider reference population (and denser marker panels)

Sample availability

Upper: N_e=10 only

Middle: N_e=100 only

Lower: N_e=1000 only

- $h^2=0.25$
- N_e =10 would have < N = 100 (maximum acc. = 0.73)
- N_e =100 would have < N = 1,000 (maximum acc. = 0.81)
- N_e =1,000 can have N = 20,000 (acc. = 0.83)

Composite design

Implication

- Marker density
 - For beef cattle or sheep, very dense markers (e.g. 600K) may not be cost-effective, compared to 50K
 - For $N_e = 1000$, accuracy is similar between 50K and 600K
- Marker density is not a critical design parameter
 - > 50K with N_e = 1000 (livestock)
 - $> 200K \text{ with N}_e = 10,000 \text{ (human)}$
- But, it may matter with very large N_e
 - Multi-breeds or multi-ethnicities

Implication

- To maximise prediction accuracy
 - give a priority to genotype reference sample of smaller N_e,
 - e.g. close relatives > flocks (local, village) > states > country >
 - When h² is lower, reference sample of smaller N_e is more important

Note that N_e can be changed, depending on the target sample

Implication

■ MTG2

https://sites.google.com/site/honglee0707/mtg2

Given design parameters, MTG2 can provide the expected accuracy and power

See section 7 and 9 in the manual