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Estimation of Genetic Parameters: principles 

 

  Introduction 

 

The estimation of genetic parameters is an important issue in animal breeding. First of 

all, estimating additive genetic and possible non-additive genetic variances contributes 

to a better understanding of the genetic mechanism. Secondly, estimates of genetic and 

phenotypic variances and covariances are essential for the prediction of breeding values 

(selection index and BLUP) and for the prediction of the expected genetic response of 

selection programmes. Parameters that are of interest are heritability, genetic and 

phenotypic correlation and repeatability, and those are computed as functions of the 

variance components. 

 Estimation of heritability is based on methods that determine resemblance 

between genetically related animals. Roughly, there are two methods that can be used. 

1) the resemblance between parents and offspring. If we plot the observations on 

offspring against the values of their parents (either sires, or dams, or their average), we 

can perform Offspring-Parent regression. The slope of the regression line though is plot 

reflects how much of the phenotypic differences that we find in parents are retrieved in 

their offspring. The expected value of the regression line is bOP = 0.5h2. (or h2 when 

regression is on midparent mean) . Offspring-parent regression is not often used in 

practice. It requires data on 2 generations, and uses only this data. It is also not able to 

utilize genetic relationships among parents. However, the method is robust against 

selection of parents. 

2) The estimation of variance components (within and between family components). If 

the variation within families is large relative to differences between families, the trait 

must be lowly heritable. Variance components are attributed to specific effects. For 

example, the (paternal) half-sib variance is due to differences between sires. The 

variance component represents the sire variance, which is a quarter of the additive 

genetic variance. 
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Estimation of variance components is easier to generalise, and this method is generally 

used to estimate genetic parameters. This chapter will therefore mostly deal with 

variance component estimation.  

In analysing data, we are promptly faced with variances. With each set of data we 

assume a (mixed) model that explains the observations. In this, we make a distinction 

between fixed effects, that determine the level (expected means) of observations, and 

random effects that determine variance. A model at least exists of one fixed (mean) 

and one random effect (residual error variance). If observations also are influenced by a 

genetic contribution of the animals, then a genetic variance component exists as well. In 

that situation, we have two components contributing to the total variance of the 

observations: a genetic and a residual variance component. If we calculate responses in 

breeding programs, we make use of those parameters. In predicting breeding values, a 

model can be applied which use both fixed and random effects and  Best Linear 

Unbiased Prediction (BLUP). Variances and covariances are assumed to be known.   

 

When to estimate variance components? 

In general, the estimation of variances and covariances has to be based on a sufficient 

amount of data. Depending on the data structure and the circumstances during 

measuring, estimations can be based on some hundreds (selection experiments) or more 

than 10,000 observations (field recorded data). It is obvious that we are not interested in 

estimating variance components from every data set. The information in literature is in 

many cases even better than estimations based on a small data set. In general, we have 

to estimate variance if: 

         - we are interested in a new trait, from which no parameters are available; 

- variances and covariances might have changed over time 

- considerable changes have occurred in a population e.g. due to recent 

importations. 

Mostly it is assumed that variances and covariances, and especially the ratio of both of 

them (like heritability, correlation), are based on particular biological rules, which do 

not rapidly change over time. However, it is well known that the genetic variance 

changes as consequence of selection. Changes are especially expected in situations with 

short generation intervals, high selection intensities or high degrees of inbreeding or in a 

situation in which a trait is determined by only a few genes. Secondly, the 

circumstances under which measurements are taken can change. If conditions are 
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getting more uniform over time, the environmental variance decreases, and 

consequently the heritability increases. Thirdly, the biological interpretation of a trait 

can change as consequence of a changed environment; feed intake under limited 

feeding is not the same as feed intake under ad-lib feeding. In conclusion, there are 

sufficient reasons for regular estimation of (co-)variance components.  

 

  Variance components 

 

What are variance components?  Measures of extend of differences or variability is 

indicated with variance. Variance is always related to a particular effect, that has an 

impact on observations. When we want to compute the variance on n observations 

(vector y), then an estimator for the variance is, 

The statistical model that describes those observations is, 

 yi =  + ei 

An estimator for  is the average of y. The differences between an observation and , 

(yi -y.), are the random deviations as consequence of the residual (or error-) effect (ei). 

In this situation, the variance of y is equal to the variance of only the random 

component in the model (var(y) = var(e), is the residual variance). In the numerator, the 

estimator of var(e) contains the Sum of Squares that can be ascribed to the residuals. 

The expectation of the sum of squares is equal to the multiplication of a coefficient 

times the variance component. In this situation it is equal to the degrees of freedom, 

which remain for the residual effect. Therefore, the variance is an average of the 

squared differences as consequence of the concerning effect. 

In a situation with more random effects, we are able to estimate more variance 

components. For this, we first have to quantify the contribution of each random effect. 

Afterwards we can compute the sum of squares for each of them. The test and 

estimation procedure widely used, is ANOVA. In balanced data, it is rather simple to 

estimate variance components, by setting the "Mean Squares" equal to their 

expectations. Those expectations are linear functions of the variance components. 

  

 

var(y) =  ( y - y )  / (n -1)
i=1

n

i

2


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As an example, we can take a simple model with one main sire effect (ai). 

  yij =  + ai + eij 

Assume N observations, with s sires, with N/s=n is the number daughters per sire. 

Then, the ANOVA table is as follows, 

 

 

Source  df Sum of Squares Mean Squares  EMS 

Mean  1  SSM  SSM    

Sires  s-1  SSA  SSA/(s-1)  n s
2 + e

2 

Error  N-s  SSE  SSE/(N-s)  e
2 

Total  N  SST   

 

where 

yij is an observation on the jth daughter of the ith sire. The total sum of squares (SST) is 

therefor the sum of each of the observations squared. 

 

SSM  =   N *  y
..
2

 

The mean sum of squares is therefore N times the means squared.  

SST  =   y
i=1

s

j=1

n

ij

2


1 

SSA  =   n ( y  -  y  )
i=1

s

i. ..

2


 

The sum of squares due to a particular effect (e.g. the sire effect) is therefore the sum over all 

observations of the estimated (sire) effect in each observation squared (in balanced data this 

is the difference between the progeny group mean of a sire and the overall mean). 

 

SSE  =    ( y  -  y  )
i=1

s

j=1

n

ij i.

2

 
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The sum of squares due to the residual (error) is the sum over all observations of the 

residual effect in each observation squared (this is the difference between the 

observation and its group mean). 

  

From the ANOVA table we can calculate estimates of variance components as 

 

   / ( )
e

SSE N s2    

 

and   [( / ( ))  ] / 
s e

SSA s n2 21    

 

Notice that the sum of squares for the main effect (SSA) is the sum of all the squared 

estimates of ai, because in a balanced data set the estimate of ai is equal to (yi. -y ..). In a 

balanced data, it is rather simple to form the expectations for each sum of squares, 

because the number of observations per class of a is constant (n). 

Originally, in unbalanced data, the same technique was applied, using for each class a 

weighted average. Henderson (1953) developed analogue techniques for unbalanced 

data. Because of the use of vector notation those techniques became popular for use in 

computer programmes, like Harvey and SAS. In essence techniques are the same as in 

balanced data, using an ANOVA table with the sum of squares for the different effects 

and their expectations. 

 

 Methods used for estimation of genetic parameters 

 

The methods of Henderson use Least Squares equations and variance components 

are estimated of certain quadratics (usually differences between quadratics) and their 

expectations. The variance of the estimates is not minimized (i.e. the estimation is not 

the most accurate) because sums of squares and expectations are not dependent on the 

variance-covariance structure of the data but rather on LS equations. Estimates of 

variances are unbiased but can fall outside the parameter space (e.g. they can be 

negative). Estimates are also not unique because, when there are several random effects,  

sums of squares due to random effects can be computed in several ways, i.e. corrected 

for several combinations of other effects. 
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ML (Maximum Likelihood)-estimators maximize the likelihood of the parameters 

given the density functions and the data. Estimates are not unbiased but they have 

smaller variance then the unbiased estimators.  

REML (Restricted ML) estimators maximize the likelihood of the parameters after 

correcting for the fixed effects (formally: in the space orthogonal to the fixed effects). 

In ML methods the loss in degrees of freedom due to correction for fixed effects is not 

taken into account. In REML this loss in degrees of freedom is accounted for. Different 

quadratic forms are calculated based on the mixed model equations   

 

In most algorithms to obtain REML estimates, iteration is used. This process starts with a certain set of 

variance components and stops when the set of variance components which results in the highest 

likelihood is found. REML estimators are within the parameters space by definition but therefore they are 

biased. There are several algorithms to compute REML and in practice some algorithms give even 

negative estimates (therefore formally not REML).  

 

Choice of the best method to estimated variances is not obvious. One could choose for 

unbiasedness but in the practice of estimating variances accuracy (minimal variance) is 

usually preferred. It is also important to notice that unbiased methods use least squares 

equations and therefore can not correct for selection in animal breeding data, e.g. 

through the relationships matrix or by using correlated traits. In animal breeding, data 

used to estimate variance components frequently originates from selection experiments 

or livestock improvement schemes, which involve continuous culling of animals on the 

basis of their performance or breeding values. In that case, ANOVA estimators, which 

assume that data are randomly sampled, tend to be subject to selection bias. Under 

certain conditions (RE)ML will account for selection, because it makes use of the 

mixed model equations. This very important feature has made REML the method of 

choice for most animal breeding applications. 

 

Genetic parameters 

 

Variance components provide us with genetic parameters such as 

 

Heritability (h2) = VA / VP = additive genetic variance / total phenotypic variance 

 

 or  4* sire variance / phenotypic variance 
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In an animal model we fit the additive genetic effect of the animal and the variance of 

this term gives us the additive genetic variance. In a model where we fit the effect of 

sire, we estimate sire variance and this needs to be multiplied by 4 to get additive 

genetic variance. 

 

Genetic Corelation = rg = Cov (A1,A2)/ sqrt(VA1*VA2)  

   = genetic covariance divided by the product of genetic SD.  

 

Repeatability = (VA + Vep ) / VP  

= sum of VA and Permanent Environm. Variance divided by Phenotypic Variance 

 

Models of analysis 

 

Developments in variance component estimation specific to animal breeding have been 

closely linked with advances in the genetic evaluation of animals by Best Linear 

Unbiased Prediction. Early REML applications were generally limited to models 

largely equivalent to those in corresponding ANOVA type analysis, considering one 

random effect only and estimating genetic variances from paternal half sib covariances 

(so-called sire model). 

Recently Animal Model (AM) has come to dominate genetic evaluation schemes, 

allowing information on all known relationships between animals to be incorporated in 

the analysis. With the introduction of the AM, expanded models that are more accurate 

were described, e.g. models with maternal, permanent environmental, cytoplasmic or 

dominance effects or effects at QTL. These effects are fitted as additional random 

effects. Maximum likelihood based methods appeared to be most flexible to 

accommodate such models. In terms of (RE)ML estimation of variance components has 

changed thinking from the expectation of mean squares and the interpretation of 

observational components of variance in genetic terms (e.g. variance between and 

within half sib families) to a more direct approach of calculating a likelihood of a data 

vector for a given model with a given set of parameters, and maximizing this likelihood. 

Such models indeed can be complicated with several random effects and covariances 

amongst the levels of each random effect to be specified e.g. additive genetic or 

dominance relationships.  

There is obviously an advantage in using (RE)ML methods that are more flexible in 

handling animal breeding data on several (overlapping) generations (and possibly 
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several random effects). However, the use of such methods has a danger in the sense 

that we need not to think explicitly anymore about data structure. To estimate, as an 

example, additive genetic variance, we need to have a data set that contains a certain 

family structure that allows us to separate differences between families from differences 

within families. Or in other words, we need to separate genetic and residual variance. 

ANOVA methods require more explicit knowledge about such structure, since the data 

has to be ordered according to family structures (e.g. by half sib groups). Such ordering 

is not necessary in Likelihood Estimation. Some REML packages may even allow 

estimation based on data that have single records per animal and no family structure. 

Obviously, such data does not allow estimation of heritability.  

In these notes we assume a mixed model with one random effect only. This could be 

either a sire effect or an animal effect. Different derivations and algorithms are easier to 

follow for models with one random effect only, but we will bear in mind that most 

methods, and particularly (restricted) maximum likelihood has been extended and 

applied to more complicated models. 

 

  

An simple example 
 

To get some feel for why it is useful to calculate sums of squares in the construction 

and testing of statistical models for prediction, consider the following example.   

Suppose we have 4 observations and a one-way classification with 2 levels (A and B). 

Calculate the sum of squares for the total, the mean, the model and the residual.  

Residual 1 refers to a model where only the mean is fitted and residual 2 to a model 

where also the class effect is fitted.  

Calculate sums of squares ‘by hand’ based on the numbers the column. 

 

 

 

 

class Observation 

 

Mean Residual 1 Predicted 

Y 

Residual 2 

A1 8     

A1 9     

A2 11     

A2 12     

Sum of 

Squares 

      

 

Compare SS calculations with expressions for SST, SSM, SSA and SSE on page 107.
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Methods to estimate genetic parameters 
 

 

 

Henderson’s method 3 

 

Genetic parameters have been estimated for many years using analysis of variance 

(ANOVA) or analogous methods. The ANOVA method has been popular because 

standard software like SAS provides such estimates. 

In general, these methods require that individuals can be assigned to groups with the 

same degree of relationship for all members. Family structures considered most often 

are paternal half-sib groups or full-sib groups. In the case of paternal half-sib group all 

offspring of one sire are treated as one group and offspring of different sires are 

allocated to different groups.  

Using ANOVA, the covariance among members of a family or group of relatives is 

usually determined as the variance component between groups. For example, in case of 

a sire model, the variance between sires s
2 and variance within sires e

2 . As shown 

earlier, the sire variance s
2 = ¼a

2 while the variance within sires is .75a
2+e

2.   

Calculating the variance between groups, involves partitioning the sum of squared 

observations (SS) due to different sources of variation in the model of analysis, groups 

of relatives being one of them, and equating the corresponding mean squares. Mean 

squares are derived as the SS divided by the associated degrees of freedom, to their 

expectations. The same principle applies for multivariate analyses but considering sums 

of cross-products between traits instead of SS. For balanced data, the partial SSs are 

orthogonal and their expected values are simple linear combinations of the variance 

components between groups so that calculations are straightforward, even for multiple 

cross-classifications, and estimators are unique. 

Data arising from animal genetics are usually not balanced but methods analogous to 

the ANOVA have been developed for unbalanced data. In particular, Henderson's 

(1953) method 3 of 'fitting constants' has found extensive use. This approach replaces 

the Sums of squares (SS) in the balanced ANOVA by quadratic forms involving the 

least squares solutions of effects for which variances are to be estimated. Its widespread 

application was greatly aided by the availability of a 'general' least-squares computer 

program tailored towards applications commonly arising in animal breeding (Harvey,  

1977). Henderson method 3 is also implemented in the statistical package SAS. 
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Consider a mixed linear model for one trait, represented by 

with y, b, u and e representing the vectors of observations, fixed effects, random effects 

(e.g. sire) and residual errors, respectively, and X and Z the corresponding design 

matrices. Assume all levels of u pertain to the same source of variation, for example 

sires, and that V(u)= u
2 I, V(e)= e

2 I and cov(u,e')=0.  

The Least Squares equations  are: 

Absorbing the fixed effects reduces the equations to 

 

Z' M Z û   =   Z'  M  y 

 

with   M  =  I - X' ( X'X )
–1 X'.  

When the inverse of ( X'X ) does not exist, a generalized inverse can be used in its 

place. 

Method 3 estimates of variance components are then: 

 
u

2 e

2

 =  
  -   (r( ) -  1 )

tr( )


 


 



u Z M y Z

Z MZ  

 

with r(X) and r(Z) denoting the column rank of X and Z, respectively, N the number of 

observations, and tr the trace operator. In this method any covariances between levels of 

u (i.e. relations between sires) are ignored. An extension of method 3 to account for 

relationships between u has been considered by Sørensen and Kennedy (1986). 

 

{An analogy with the earlier ANOVA methods can be seen as follows: 

 Y = Xb + Zu + e  

 

 
X X X Z

Z X Z Z
   

b

u
  =   

X y

Z Y
 

 

 




































   

 
 

e

2  =  
 -   -  

 N -  r( ) -  r( )+ 1


 


    y y u Z y b X y

X Z
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The expression y’y  is a vector notation for ‘total sum of squares’. Expressions like 

' 'b X y  (solution multiplied by right hand side) can also be written as 

y X X X X y' ( ' ) '1
since  ( ' ) 'b X X X y 1

 (we ignore now random effects). Since 

X’y contains the class totals, and X’X contains the number of observations per class, 

the expressions y X X X X y' ( ' ) '1
gives the sum of the class totals squared, divided 

by the number of observations per class. This is exactly the Sum of squares due to the 

b-effect. The expression y y u Z y b X y' ' ' ' '   is therefore equal to the residual sum 

of squares.} 

 

Restricted Maximum Likelihood 

 

General interest in Maximum Likelihood estimators of variance components has been 

propelled by their desirable statistical properties: they are consistent, asymptotically 

normal and efficient. Harville (1977) has given an extensive review of ML estimation. 

Furthermore, the ML framework provides a great deal of flexibility, allowing for 

designs and models for analysis which cannot be accommodated by ANOVA type of 

estimators. Initial interest in ML, to estimate both genetic parameters and fixed effects, 

was stimulated by concern about bias due to selection. A number of simulation studies 

have illustrated that selection can be accounted for by REML (Sorensen and Kennedy, 

1984; Van der Werf and De Boer, 1990) when the complete mixed model is used with 

all genetic relationships and all data used for selection included. 

Restricted Maximum Likelihood is a ML method that accounts for the loss of degrees 

of freedom due to fitting fixed effects. Patterson and Thompson (1971) formally 

described REML. The procedure requires that y have a multivariate normal distribution 

although various authors have indicated that ML or REML estimators may be an 

appropriate choice even if normality does not hold (Meyer, 1990).  

Over the last decade, extensive research effort has been directed towards the 

development of specialized and efficient algorithms for particular classes of models. 

These procedures will be discussed on the following pages. Before starting with that, let 

me give a brief introduction. In ML and REML the aim is to find the set of parameters 

which maximizes the likelihood of the data. The likelihood of the data for a given 

model can be written as a function. From calculus we know that we can find the 

maximum of a function by taking the first derivative and set that equal to zero. Solving 
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that would result in the desired parameters (assuming that we did not find the minimum, 

this can be checked using second derivatives). The first and second derivatives of the 

likelihood function are complicated formulas. Different algorithms have been 

developed which try to circumvent this problem. An overview of different methods is 

given by Meyer (1990).  

 

Principle of Maximum Likelihood 

Suppose we have a variable y with mean  and standard deviation . The normal 

distribution of this variable can be represented as y = N(, 2) . A mathematical 

representation of a density function for a normally distributed variable is 

 

This is called the Probability Density Function (PDF) of y. 

A  function for a multidimensional normal distribution y=N(Xb, V) is 

where N is the length of y and |V| is the determinant of V. The function f(y) is called a 

density function of y. The function gives the probability of finding a certain y given the 

parameters. The parameters are the means in Xb ("location parameters") and the 

variances in V ("dispersion parameters"). However, this function can also be used the 

other way around: if we have observed data, it gives us the probability of having such 

data for certain parameter values. Therefore, the probability density function can be 

used as a likelihood function as well. When the data y is known, f(y) is a likelihood 

function and this function can be maximized in the parameters, i.e. we want to find the 

parameters for which f(y) has the highest value. Instead of maximizing f(y) we can also 

maximize the elog of f(y); L(b,V│X, y), which is the log likelihood function:  

 

f(y) =  
1

2
 e

-
1

2

(y- )
2

2

 





 

 

f(y) =  
1

2 | |
 e1

2
N

1

2

-
1

2
( - ) ( - )-1

 V

y Xb V y Xb

 

 

 L b V X y N V y Xb V Y Xb( , | , ) log( ) log( ) ( )' ( )     1
2

1
2

1
2

12  [1]
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This function gives the likelihood of the unknown parameters b and V given the 

observed data y and the design matrix X. The matrix V depends on the variance 

components we are interested in. V has susesually a known design (e.g. genetic 

relationships) but is proportional to unknown parameter values, e.g.  

V = ZAZ’ 2

a  + I  2

e . The maximum likelihood estimates of the parameters are 

obtained by maximizing the likelihood function.  

In Restricted Maximum Likelihood as suggested by Patterson and Thompson (1971) the 

likelihood function of the data is maximized  'in the space of error contrasts'. In other 

words, the density function is maximized after correcting all observations first for the 

fixed effects 

 

Methods available to get REML estimates can be divided in the following groups: 

1) Methods using first derivatives of the likelihood function. 

2) Methods using first and second derivatives of the likelihood function. 

3) Derivative free methods. 

For models with more random factors it is more difficult to find the maximum and it is 

also more difficult to construct derivatives. In categories 1 and 2, the derivatives can be 

calculated exact but in most methods approximations are used. 

 

REML using derivatives 

Methods which use both first and second derivatives, i.e. geometrically speaking 

information on slope and curvature of the function, have been found to converge 

quickest (Meyer, 1989).  However, even for simple models, calculation of actual or 

expected second derivatives was initially computationally highly demanding if not 

prohibitive. Therefore, initially many REML applications were based on the so-called 

Expectation-Maximization (EM) algorithm. This requires, implicitly, first derivatives of 

the likelihood to be evaluated. The resulting estimators then have the form of quadratics 

in the vector of random effects solutions, obtained by BLUP for the assumed values of 

variances to be estimated, which are equated to their expectations. For the mixed model 

equations: 
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Note that ̂  is a function of the variance parameters that need to be estimated. 

Therefore, initially a prior (starting) value of   is used. The REML estimates of 

variance components using the EM algorithm can be obtained as: 

where N is the number of observations, q is the number of random genetic effect levels 

and C the part of the inverse of the mixed model equations that corresponds with the 

random effects. The model can contain animal effects and, and a would denote the 

vector of additive genetic effects.  

The EM algorithms have the property of always yielding positive estimates as long as 

prior values (values which are used to start the calculations) are positive (Harville, 

1977). The EM algorithm is not very difficult to program, because all elements which 

needed can be derived from the mixed model equations. What is needed for each round 

of iteration is the solutions to the mixed model equations and the trace of the inverse of 

the random part of the coefficient matrix. This last element is computationally the most 

difficult part. Iterative methods can be used to obtain estimates for the fixed and random 

effect but the EM algorithm requires the direct inverse of a matrix of size equal to the 

number of levels of the random effects, in each round of iteration. This imposes 

restrictions on the kind of analyses feasible, especially for multivariate analyses.  

The EM algorithm is an iterative procedure to get estimates. One starts the process with 

solving the equations for a given (prior) value of the variance components. These values 

are used in estimating the effects of the model ( depends on the assumed levels of the 

variance components). This results in a new value for the variance components and the 

corresponding value of  . In an iterative process, the old values and the new value of 

the next iteration round are becoming more and more similar, and ultimately converge 

(when the difference is very small) to a solution  

 































 

YZ

yX
  =  

a

b
   

+ZZXZ

ZXXX
 

1-
ˆ

ˆ

A̂
  

 
 a

2 -1 -1
e

2 =    +  tr( )   /  q  a A a A C
 

 

 
   e

2  =    -   -   /  N - r( )     y y b X y a Z y X 
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Derivative Free REML (DFREML) 

In the development of algorithms to compute REML an approach that did not make use 

of derivatives proved to be particularly successful to compute variance components 

from an animal model. This approach is called a derivative free approach, and was first 

introduced by Smith and Graser (1986) and Graser et al. (1987). The maximum is found 

by comparing likelihood values of different parameter values.   

The likelihood function from [1] can be re-written. First it is written after eliminating 

(‘correcting for’) the fixed effects. This is called the Restricted Maximum Likelihood. 

Secondly, it is re-written in terms of elements that relate to the mixed model equations:  

where W is the coefficient matrix of the mixed model equations. The log |A| is a 

constant which does not depend on the parameters of interest (genetic relations between 

animals are constant for a given data set) and does not have to be evaluated. The matrix 

P is quite complicated, but Smith and Graser (1986) and Graser et al. (1987) showed 

that y’Py represents the sum of squares of residuals. With the log determinant of the 

coefficient matrix ( log |W| ) it can be evaluated simultaneously by augmenting W by 

the vector of right hand sides and the total SS (y'y) and absorbing all rows and columns 

into the latter. The augmented mixed model array is:  

Absorption, which is also referred to as Gaussian Elimination, is used to calculate the 

quantities y'Py and  log |W|. The residual variance can be estimated as  y'Py/(N-r(X)) so 

that log L can be maximized with respect to one parameter only, the variance ratio ,  

estimating  subsequently a
2/. 

This principle has been extended to models including additional random effects, such as 

environmental effect due to litters or a maternal genetic effect, and to multivariate 

analyses (Meyer, 1989).  

  log log log log logL = -
1

2
const +  q  +  N +  +   +  a

2

e

2
  y Py |W| |A|   

 

 

+ -1

  

  

  



















y y y X y Z

X y X X X Z

Z y Z X Z Z A
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The derivative free algorithm has been applied in the DFREML programmes that are 

written and distributed by Karin Meyer. These programs can be used for uni- and 

multivariate analysis and for models with several random effects.  

Groeneveld (1991) presented a second package for estimating variance components 

using a derivative free approach. This programme is distributed under the name VCE 

and has its setup is similar to that of PEST.  

A more robust and efficient algorithm analysis is ‘Average Information REML’, now 

applied by the DFREML package. A very powerful program for parameter estimation is 

the ASREML package (Gilmour et al., 1996). 

 

 

REML using the Average Information algorithm. 

First we discuss more formally first and second derivatives of the likelihood function. 

Then, the mechanism of an AI algorithm will be presented. 

The partial derivative with respect to the vector of fixed effects, b, in equation 2 can 

be calculated by using a general result for matrix derivatives (Lynch and Walsh, 

1998),   

    
b

XbyVXby



 1'
 = -2X’V-1(y-Xb)                       [3] 

It is noted that from equation 1 and 3, 

b

XbL i



 ),( 2
 = X’V-1(y-Xb)                                     [4] 

The partial derivatives of ln |V| in equation 1 with respect to the variance of random 

effects, 
2

i  (e.g. i = a and e) can be obtained from matrix theory (Searle, 1982) 

















 

2

1

2
ln

ii

V
VtrV


      [5 a] 

Differentiating V-1 with respect to 
2

i  results in 
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1

2

1

2

1












V

V
V

V

ii 
                                               [5 b] 

where, tr (trace) is the sum of the diagonal elements of a square matrix. 

 

From equation 5a, the first derivatives of L from equation 1 with respect to the 

variance components can be obtained as,   

2

2 ),(

i

iXbL








 = )ˆ()'ˆ(

2

1
)(

2

1 111 bXyVVVbXyVVtr ii             [6 a] 

and from equation 5b, the second derivative is, 

22

22 ),(

ji

iXbL








 = )ˆ()'ˆ()(

2

1 11111 bXyVVVVVbXyVVVVtr jiji       [6 b] 

where, 
2

i

V




 is simplified as iV . 

 

Suppose V is defined as  ZAZ’
2

a  + I  
2

e , then the following equation evaluates the 

expression in equation 6 a and 6 b.  














)(

)(
2 eiI

aiZAZ
V

V
i

i
                                        [7] 

As Lynch and Walsh (1998) stated, the ML estimators are obtained by making the 

first derivative of L (equation 6a) equal to zero and solving, thus equation 6 a gives 

)ˆ()'ˆ()( 111 bXyVVVbXyVVtr ii    = yPVPy i
ˆˆ'                    [8] 

where 
11111 ')'(   VXXVXXVVP  

 

From equation 7 and 8, ML equations are 

yPZAZPyZAZVtr ˆ)'(ˆ'))'(( 1 
             for 

2

a                     [9 a] 
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yPPyVtr ˆˆ')( 1                       for 2

e               [9 b] 

Similarly, but removing the fixed effects from the model, REML equations can be 

derived from ML equations. In REML we use a transformation matrix K such that, 

KX = 0                                                                 [10] 

Multiplying the K with the mixed linear model (y = Xb + Za + e) replaces 

y by Ky  ~  N (0, KVK’) 

X by KX = 0 

Z by KZ 

V by KVK’                                                         [11] 

Applying equation 11 to equation 9a or 9b yields, 

 KyKVKKKVKVKKyKKVKVKtr ii

111 )'(')'('')')'((                    [12] 

Searle et al. (1992) proved the following equation. 

P = K’ (KVK’)-1 K                                                 [13] 

Therefore, equation 12 can be  

yPVPyPVtr ii
ˆˆ')(                                           [14] 

 

Equation 6a and 6b can be transformed as,   

2

i

L




 = PyPVyPVtr ii '

2

1
)(

2

1
           [15 a] 

22

2

ji

L

 


 = PyPVPVyPVPVtr jiji ')(

2

1
     [15 b] 

From equation 14, REML equations are 

 

yPZAZPyZAZPtr ˆ)'(ˆ'))'((           for 
2

a                               [16 a] 

yPPyPtr ˆˆ')(                for 
2

e                                                        [16 b] 
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The Average Information Algorithm for REML estimation 
 

Various techniques for solving ML / REML equations have been introduced (e.g. the 

Newton-Rhapson algorithm, Fisher’s scoring method and DF algorithm). 

 

In this section, the Newton-Rhapson algorithm and Fisher’s scoring method are firstly 

described, and the Hessian matrix and the Fisher information matrix are derived. This 

may help to understand the property of the AI algorithm and the AI matrix. And then, 

the method for estimating the elements of AI matrix is described which is key process 

for the AI algorithm.     



Average Information from the Hessian and the Fischer information matrix 

 

The Newton-Raphson algorithm obtains the REML estimate using the following 

equation (Lynch and Walsh, 1998). 

)(1)()()1( )( kkkk L
H 




                                      [17] 

where   is a vector of parameters, k is k th iteration, 


L
 is a column vector of the 

first derivatives of the log likelihood function with respect to each parameter, and H is 

the Hessian matrix elements of which are the second derivatives of the log likelihood 

function with respect to the variance components. From equation 7 and 15 b, the 

Hessian matrix for variance components (residual variance and additive genetic 

variance) is,  

 

H  =  
22

2

ji

L

 


 = 














PyPAPAyPAPAtrPPyPAyPPAtr

PPyPAyPPAtrPPPyyPPtr

**'*)*(*'2)*(

*'2)*('2)(

2

1   [18] 

where A* = 'ZAZ    
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In Fisher’s scoring method, the inverse of the Hessian matrix in equation 18 is 

replaced by its expected value (Lynch and Walsh, 1998). 

)(1)()()1( )( kkkk L
F 




                                                    [19] 

where F is the Fisher information matrix. 

F = -E (
22

2

ji

L

 


) = 










*)*()*(

)*()(

2

1

PAPAtrPPAtr

PPAtrPPtr
                 [20] 

 

The average information from the Hessian and Fisher’s information matrix is, 

AI = (-H + F ) / 2  = 









PyPAPAyPPyPAy

PPyPAyPPPyy

**'*'

*''

2

1        [21] 

From equation 17 and 19, 

)(1)()()1( )( kkkk L
AI 




                                  [22] 

 

The method for calculating the elements of the AI matrix requires term like PyVi , 

which are referred to as working variates, )( 2

iy   (Gilmour et al., 1995).     

)( 2

iy   = PyVi  

 

According to Johnson and Thompson (1995), the working variate for additive genetic 

variance and residuals are expressed as, 

 

)( 2

ay   = A*Py = aZ
a

ˆ
1

2
                                               [23 a] 

)( 2

ey   = Py = e
e

ˆ
1

2
                                                            [23 b] 
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where â  is vector of solutions from the mixed model equation (MME) for the mixed 

linear model, and ê  = aZbXy ˆˆ  . 

 

According to Johnson and Thompson (1995), the elements of the AI matrix can be 

calculated as a vector product of the working variates from the MME in which y is 

replaced by the working variates. For example, consider the element, y’PPPy in the 

AI matrix.    

y’PPPy = )( 2

ey  ’ P )( 2

ey                                  [24] 

The term, y’PPPy, can be obtained by multiplying the transpose of the column vector 

of )( 2

ey   [23 b] by the column vector of residuals, P )( 2

ey  . All the elements in the 

AI matrix can be calculated in the same manner. 

 

Alternatively, Gilmour et al. (1995) calculated the AI matrix using the Gaussian 

elimination of the M matrix. 

M = 

















 





21111

111

111

'''

'''

'''

aAZRZXRZyRZ

ZRXXRXyRX

ZRyXRyyRy



                         [25] 

 

After performing Gaussian elimination, it is well known that the element of the first 

row and first column in the M matrix, M* (1,1), equals y’Py (Graser et al., 1987). If y 

is replaced by the working variate for 
2

e  ( )( 2

ey   from equation 23 b), then M* (1,1) 

after Gaussian elimination equals y’PPPy  in the AI matrix. If y is replaced by the 

working variate for 
2

a  ( )( 2

ay   from equation 23 a), then M* (1,1) after Gaussian 

elimination equals y’PA*PA*Py in the AI matrix. For a cross product (e.g. y’PA*PPy 

in the AI matrix), the M matrix will be formed as, 
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M = 



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After performing Gaussian elimination of M, M* (1,1) equals y’PA*PPy in the AI 

matrix. 

All elements in the AI matrix can be calculated in the same manner. 

 

After establishing the AI matrix, 


L
 is required for equation 22.  

 

2

i

L
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
 = PyPVyPVtr ii '

2

1
)(

2

1
           (from equation 15 a) 

 

PyPVy i'  can be calculated from equation 23 a and b. 
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The procedure of the AI algorithm  

 

Efficient computational procedures for the AI algorithm for univariate case were 

described in several studies (Johnson and Thompson, 1995; Gilmour et al., 1995).  

 

1. Construction of mixed model equation (MME) or matrix M [25] 

 

2. Calculating log likelihood in current stage of iteration 
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The log likelihood from equation 2 can be calculated by the following equation 

(Meyer, 1989). 

  PyynACnXrankNL ue 'ˆlog||log||logˆlog)(
2

1 22    

 where n is the number of animals, |  | is the determinant of the matrices. 

 

4. Estimating b̂ , û  and q̂  

For the calculation of the working variates in equation 23, the fixed effects ( b̂ ) and 

additive random effects ( û  and q̂ ) are obtained from the MME. Alternatively, using 

intermediate terms formed during Gaussian elimination, b̂ , û  and q̂  are efficiently 

obtained (see Gilmour et al., 1995). Given the effects ( b̂ , û  and q̂ ), residuals can be 

obtained (i.e. ê  = qZuZbXy ˆˆˆ
21  ). 

 

5. AI matrix using [21], [23], [24] and [25] 

 

 

6. First derivatives from [26] 

 

 

7. Update from [22] 

 

 

8. Convergence 
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