This document will demonstrate the quantitative genetic of heterosis
and show heterosis in an example maize simulation.
Quantitative genetics of heterosis
The below simulation will show different types of heterosis presented
in the Labroo et. al. figure.
# Selfing removes half of inbred midparent heterosis
meanG(F2_self) - (meanG(A_inbred)+meanG(B_inbred))/2
Trait1
5.977354
Maize example
The below script simulates a maize population using parameters
determined by after tuning. It will also show the correlation between
per se and testcross performance.
cor(GCA$GCAm[,2], pheno(B))
[,1]
[1,] 0.756952
LS0tCnRpdGxlOiAiUXVhbnRpdGF0aXZlIEdlbmV0aWNzOiBEb21pbmFuY2UgRWZmZWN0cywgUGFydCAyIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgpUaGlzIGRvY3VtZW50IHdpbGwgZGVtb25zdHJhdGUgdGhlIHF1YW50aXRhdGl2ZSBnZW5ldGljIG9mIGhldGVyb3NpcyBhbmQgc2hvdyBoZXRlcm9zaXMgaW4gYW4gZXhhbXBsZSBtYWl6ZSBzaW11bGF0aW9uLgoKIyMgUXVhbnRpdGF0aXZlIGdlbmV0aWNzIG9mIGhldGVyb3NpcwoKVGhlIGJlbG93IHNpbXVsYXRpb24gd2lsbCBzaG93IGRpZmZlcmVudCB0eXBlcyBvZiBoZXRlcm9zaXMgcHJlc2VudGVkIGluIHRoZSBMYWJyb28gZXQuIGFsLiBmaWd1cmUuCgpgYGB7cn0KbGlicmFyeShBbHBoYVNpbVIpCgojIEFkZGluZyBhIHNwbGl0IGluIGNvYWxlc2NlbnQgc2ltdWxhdGlvbiB0byBtb2RlbCAyIHBvcHVsYXRpb25zIHRoYXQKIyBkaXZlcmdlIDEwMCBnZW5lcmF0aW9ucyBhZ28KZm91bmRlclBvcCA9IHJ1bk1hY3MobkluZD0yMDAsIG5DaHI9MTAsIHNlZ1NpdGVzPTEwMDAsIAogICAgICAgICAgICAgICAgICAgICBzcGxpdD0xMDApCgpTUCA9IFNpbVBhcmFtJAogIG5ldyhmb3VuZGVyUG9wWzE6MTAwXSkkCiAgYWRkVHJhaXRBRCgxMDAwLCBtZWFuREQ9MC4yLCB2YXJERD0wLjEpCgojIFNwbGl0dGluZyB0aGUgdHdvIHBvcHVsYXRpb25zIGluIGZvdW5kZXJQb3AgaW50byB0d28gc2VwYXJhdGUgcG9wdWxhdGlvbnMKQSA9IG5ld1BvcChmb3VuZGVyUG9wWzE6MTAwXSkKQiA9IG5ld1BvcChmb3VuZGVyUG9wWzEwMToyMDBdKQoKIyBDcmVhdGluZyBmdWxseSBpbmJyZWQgdmVyc2lvbnMgb2YgdGhlIHR3byBwb3B1bGF0aW9ucwpBX2luYnJlZCA9IG1ha2VESChBKQpCX2luYnJlZCA9IG1ha2VESChCKQoKIyBDcmVhdGluZyBhbiBGMSBoeWJyaWRzIGJldHdlZW4gcG9wdWxhdGlvbnMgQSBhbmQgQgpGMSA9IGh5YnJpZENyb3NzKEEsIEIpCgojIENyZWF0aW5nIEYxIGh5YnJpZHMgdXNpbmcgdGhlIGluYnJlZCBwb3B1bGF0aW9ucwpGMV9pbmJyZWQgPSBoeWJyaWRDcm9zcyhBX2luYnJlZCwgQl9pbmJyZWQpCgojIENyZWF0aW5nIGFuIEYyIHBvcHVsYXRpb24gYnkgcmFuZG9tIG1hdGluZyB0aGUgRjFzCkYyID0gcmFuZENyb3NzKEYxLCBuQ3Jvc3Nlcz0xMDAwMCkKCiMgRXhhbWluZSB0aGUgbWVhbnMgb2YgdGhlIGluaXRpYWwgcG9wdWxhdGlvbnMKbWVhbkcoQSkKbWVhbkcoQikKCiMgRXhhbWluZyB0aGUgbWVhbnMgb2YgdGhlIGluYnJlZCBwb3B1bGF0aW9ucwptZWFuRyhBX2luYnJlZCkKbWVhbkcoQl9pbmJyZWQpCgojIEV4YW1pbmUgdGhlIG1lYW5zIG9mIHRoZSBGMSBwb3B1bGF0aW9ucwojIFRoZXkgc2hvdWxkIGJlIGFwcHJveGltYXRlbHkgZXF1aXZhbGVudAptZWFuRyhGMSkKbWVhbkcoRjFfaW5icmVkKQoKIyBFeGFtaW5pbmcgbWVhbiBvZiBGMgptZWFuRyhGMikKCiMgUGFubWljdGljIE1pZHBhcmVudCBIZXRlcm9zaXMKbWVhbkcoRjEpIC0gKG1lYW5HKEEpK21lYW5HKEIpKS8yCgojIEluYnJlZCBNaWRwYXJlbnQgSGV0ZXJvc2lzCm1lYW5HKEYxKSAtIChtZWFuRyhBX2luYnJlZCkrbWVhbkcoQl9pbmJyZWQpKS8yCgojIEJhc2VsaW5lIEhldGVyb3NpcwoobWVhbkcoQSkrbWVhbkcoQikpLzIgLSAobWVhbkcoQV9pbmJyZWQpK21lYW5HKEJfaW5icmVkKSkvMgoKIyBGMiBIZXRlcm9zaXMgKGFib3V0IGhhbGYgb2YgcGFubWljdGljIG1pZHBhcmVudCBoZXRlcm9zaXMpCm1lYW5HKEYyKSAtIChtZWFuRyhBKSttZWFuRyhCKSkvMgoKCiMjIEV4dHJhIG5vdCBpbiBoZXRlcm9zaXMgZmlndXJlCgojIENyZWF0ZSBGMiBieSBzZWxmaW5nIEYxCkYyX3NlbGYgPSBzZWxmKEYxKQoKIyBTZWxmaW5nIHJlbW92ZXMgaGFsZiBvZiBpbmJyZWQgbWlkcGFyZW50IGhldGVyb3NpcwptZWFuRyhGMl9zZWxmKSAtIChtZWFuRyhBX2luYnJlZCkrbWVhbkcoQl9pbmJyZWQpKS8yCgpgYGAKCgojIyBNYWl6ZSBleGFtcGxlCgpUaGUgYmVsb3cgc2NyaXB0IHNpbXVsYXRlcyBhIG1haXplIHBvcHVsYXRpb24gdXNpbmcgcGFyYW1ldGVycyBkZXRlcm1pbmVkIGJ5IGFmdGVyIHR1bmluZy4gSXQgd2lsbCBhbHNvIHNob3cgdGhlIGNvcnJlbGF0aW9uIGJldHdlZW4gcGVyIHNlIGFuZCB0ZXN0Y3Jvc3MgcGVyZm9ybWFuY2UuCgpgYGB7cn0KZm91bmRlclBvcCA9IHJ1bk1hY3MobkluZD0yMDAsIG5DaHI9MTAsIHNlZ1NpdGVzPTMwMCwgCiAgICAgICAgICAgICAgICAgICAgIHNwbGl0PTEwMCwgc3BlY2llcz0iTUFJWkUiLCBpbmJyZWQ9VFJVRSkKClNQID0gU2ltUGFyYW0kCiAgbmV3KGZvdW5kZXJQb3BbMToxMDBdKSQKICBhZGRUcmFpdEFEKDMwMCwgCiAgICAgICAgICAgICBtZWFuPTcwLCAjIEJ1c2hlbHMgcGVyIGFjcmUgCiAgICAgICAgICAgICB2YXI9MjAsICMgSW5icmVkIHZhcmlhbmNlCiAgICAgICAgICAgICBtZWFuREQ9MC45MiwgCiAgICAgICAgICAgICB2YXJERD0wLjMpJAogIHNldFZhckUoSDI9MSkKCiMgQ3JlYXRlIGluYnJlZCBwb3B1bGF0aW9ucwpBID0gbmV3UG9wKGZvdW5kZXJQb3BbMToxMDBdKQpCID0gbmV3UG9wKGZvdW5kZXJQb3BbMTAxOjIwMF0pCgojIENyZWF0ZSBhbGwgcG9zc2libGUgaHlicmlkcwpGMSA9IGh5YnJpZENyb3NzKEEsIEIpCgojIEV4YW1pbmUgbWVhbnMgb2YgcG9wdWxhdGlvbnMKbWVhbkcoQSkKbWVhbkcoQikKbWVhbkcoRjEpCgojIEV4YW1pbmUgdmFyaWFuY2VzCnZhckcoQSkKdmFyRyhCKQp2YXJHKEYxKQoKIyBDYWxjdWxhdGluZyBHQ0EgdXNpbmcgYnVpbHQtaW4gZnVuY3Rpb25zIGFuZCBtZWFzdXJpbmcKIyBHQ0EgLSBwZXIgc2UgY29ycmVsYXRpb24KR0NBID0gY2FsY0dDQShGMSwgdXNlPSJndiIpCgpoZWFkKEdDQSRHQ0FmKQoKY29yKEdDQSRHQ0FmWywyXSwgZ3YoQSkpCgpjb3IoR0NBJEdDQW1bLDJdLCBndihCKSkKCiMgVGVzdGNyb3NzIHdpdGggMSB0ZXN0ZXIKCkEgPSBzZXRQaGVub0dDQShBLCB0ZXN0ZXJzPUJbMV0pCkIgPSBzZXRQaGVub0dDQShCLCB0ZXN0ZXI9QVsxXSkKCmNvcihHQ0EkR0NBZlssMl0sIHBoZW5vKEEpKQpjb3IoR0NBJEdDQW1bLDJdLCBwaGVubyhCKSkKCiMgVGVzdGNyb3NzIHdpdGggMyB0ZXN0ZXJzCgpBID0gc2V0UGhlbm9HQ0EoQSwgdGVzdGVycz1CWzE6M10pCkIgPSBzZXRQaGVub0dDQShCLCB0ZXN0ZXI9QVsxOjNdKQoKY29yKEdDQSRHQ0FmWywyXSwgcGhlbm8oQSkpCmNvcihHQ0EkR0NBbVssMl0sIHBoZW5vKEIpKQpgYGAKCg==