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 Single versus multiple markers 
 
Association between a quantitative trait and genetic markers can be evaluated using 
single markers or multiple markers. When using one single marker, it is possible to make 
inference about the segregation of a QTL linked tot that marker. However, in the case of 
single markers it is not possible to distinguish between size of a QTL effect and its 
position (relative to the marker). Also, single marker analyses have less power if the 
markers are far apart. 
 
If two (or more) markers are jointly used in an analysis, there is a lot less confounding 
between the position and size of QTL effect, and there is more power in detecting a QTL, 
even if the markers are far apart. Inference about the QTL effect as well as the 
recombination rate between QTL and markers (i.e. position of QTL) is possible.  The 
recombination rate between markers is usually assumed known. 
Therefore mapping of a QTL therefore requires the use of multiple marker genotypes in 
the analysis. . 
 
 
 
 
Determining associations between genetic markers and QTL with two markers 
 
For two markers, the QTL probability given the marker genotype depends on more 
recombinations: those are the recombination rates between M1 and QTL (=r1), between 
M2 and QTL (=r2) and between M1 and M2 (=r12).  
We consider again a half sib design where we know the sires marker genotype for two 
markers, the sire is heterozygous for the QTL and we know the marker-QTL phase.  
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TABLE 1 
Parental genotype  M1 Q M2 
    m1 q m2 
 Possible gametes  recombination?   Gamete probability 
M1 Q M2  no    (1-r1)(1-r2)/2 
M1 q M2  double: M1-q, q-M2  r1.r2/2 
        
M1 Q m2  yes: Q-m2   (1-r1)r2/2 
M1 q m2  yes: M1-q   r1(1-r2)/2 
 
m1 Q M2  yes: m1-Q   r1(1-r2)/2 
m1 q M2  yes: q-M2   (1-r1)r2 
 
m1 Q m2  double: m1-Q, Q-m2  r1.r2/2 
m1 q m2  no    (1-r1)(1-r2)/2 
 
 
Assume now also (for simplicity) that we know which marker alleles came from the sire. 
We can now work out the expected difference between the paternal marker genotype-
groups in the sire’s progeny: 
 
TABLE 2 
Marker alleles    QTL allele   frequency      Expected mean 
obtained from sire  obtained from sire    of progeny 
group 
M1M2    Q   (1-r1)(1-r2)/2  µ + α 
M1M2    q   r1.r2/2   µ 
 
M1m2    Q   (1-r1)r2/2  µ + α 
M1m2    q   r1(1-r2)/2  µ  
 
m1M2    Q   r1(1-r2)/2  µ + α 
m1M2    q    (1-r1)r2    µ 
 
m1m2    Q   r1.r2/2   µ + α 
m1m2    q   (1-r1)(1-r2)/2  µ 
α = average effect of allele substitution of Q (over q). 
 
 
 
Some tedious algebra would give the following means for the possible paternal marker-
haplotypes in progeny (sum of frequency * mean of group and divide by frequency of 
marker haplotype group) 
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TABLE 3. Expected means of different marker haplotypes.  
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The difference between the M1M2 and m1m2 haplotypes is now equal to . 
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and as r1r2 is usually a small number, this difference is quite close to the actual QTL 
allelic effect (α). The coefficient for α in Table 3 in the last column is the probability of 
having inherited Q from the sire, conditional on (given the) the paternal marker 
haplotype. This is shown more explicit in Table 4. 
 
 
TABLE 4. Probabilities for having inherited the paternal Q-allele of different marker 
haplotypes.   
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The following Table 5 gives an example of the probabilities of having inherited the Q-
allele in a half-sib family, given the marker haplotypes (PQ|MiMj). The distance between 
the markers is 40 cM. The QTL location investigated is at 10 cM from M1. Haldane’s 
mapping function is used to determine recombination rates based on these distances. 
Tables 1, 3 and 4 are used to determine probabilities. Table 3 is used to determine 
expected means of each marker type, assuming QTL genotypic means of 10 and 11 for qq 
and QQ, respectively. The dam population is assumed to have a q-frequency of 1. 
(comparable with a backcross design) 
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Table 5 
Paternal     Probability of marker haplotypes Qq mean =10 qq mean =9.5 Mean  
Markertype P(M1M2) P(M1QM2) P(Q|M1M2) prob(Qq) Prob(qq) Expected 
M1M2 0.362 0.352 0.972 0.972 0.028 9.986 
M1m2 0.138 0.103 0.745 0.745 0.255 9.873 
m1M2 0.138 0.035 0.255 0.255 0.745 9.627 
m1m2 0.362 0.010 0.028 0.028 0.972 9.514 
 
 
The following figure shows the difference between marker haplotype groups in progeny 
for a single marker (M-m) and for two markers (M1M2-m1m2), for different positions of 
the QTL relative to the M1. 
 

 
The figure shows that the difference between the non-recombinant marker haplotypes is 
much less affected by the marker-QTL distance than the M1-m1 difference for the single 
markers. Moreover, the map position is now not confounded with the QTL effect. In a 
way, map position and QTL effect have become estimable with two markers. 
 
 
The example shown here is based on half sib analysis. The interpretation of the genetic 
effect estimated depends on the constitution of the dam population, as shown in the 
previous chapter. If we want to estimate both a and d, we need a dam population that 
contributes both q and Q alleles, and where we can trace the inheritance from the dam. In 
other words, we need to identify also segregation from the dam. Choosing the dam 
population from a F1-cross of two extreme lines (extreme with respect to the putative 
QTL) would be the best choice. 
 
Inbred lines have been used in QTL mapping to avoid uncertainty about the genetic 
effects estimated. However, in animal population, complete inbred lines (with marker- 
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and QTL alleles fixated) are hardly feasible, and possibly less relevant for QTL’s to be 
used in practical applications.  
In outbred populations, there is less certainty about the animals’ QTL genotypes. Lack of  
design usually means that the marker genotypes are frequently not informative about 
paternal or maternal origin. In the next chapter, the advantages and disadvantages of 
different design will be discussed.  
At this stage we can continue that for ‘any’ design, the QTL estimation is based on two 
steps 
 
1) What is the probability that an individual has a certain QTL genotype (give the 

observed marker genotypes) 
2) What is the estimated effect of this particular genotype on the individuals’ phenotypes  
 
The first step is much easier in well-defined experiments. The second step can be 
quantified either by using the likelihood principle, or by using regression (where the 
match is measured in terms of residual sums of squares). 
We present the principle briefly here, and in Chapter 9 we will discuss in more detail 
these different methods. 
 
 
Interval mapping 
 
Maximum Likelihood  
The term ‘interval mapping’ is used for estimating the position of a QTL within two 
markers (often indicated as ‘marker-bracket’). Interval mapping is originally based on the 
maximum likelihood but there are also very good approximations possible with simple 
regression (see Chapter 9). 
 
The principle is: 
 
1) The Likelihood can be calculated for a given set of parameters (particularly QTL-

effect and QTL position) given the observed data on phenotypes and marker 
genotypes. 

 
2) The estimates for the parameters are those were the likelihood are highest. 
 
3) The significance can be tested with a likelihood ratio test: 
 

LR = 
)mod(_

)mod(_
ln2

elfullLikelihoodMax
elreducedLikelihoodMax

−  

 
The reduced model refers to the null-hypothesis, e.g. "there is no QTL effect" 
 
Using the log-likelihood: LR = -2.(ln_Lr – ln_L) 
 
where ln_L is the loge of the maximum likelihood. 
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The evidence for a particular QTL at a particular chromosomal position can be displayed 
as a likelihood map, The LR-statistic is plotted against the map position of the QTL. 
 
Lander and Botstein (1989) introduced first the concept of likelihood maps. The proposed 
to use the LOD-score as a test statistic. However, the LOD score is equal to a constant 
(1/4.61) time the LR test statistic, as shown: 
 
The LOD score for a QTL at position c is:   
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61.4
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10ln2

)(
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log10

cLRcLR
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The following figure shows a likelihood map for a marker bracket based on simulated 
data from one half sib family (backcross) with 300 progeny. The simulated QTL effect 
was 0.5 within-family standard deviations. The figure shows the true LR value based on 
ML, and the approximate LR (upper line) based on regression analysis. 
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Regression methods 
 
Regression analysis is easier (standard software can be used) and usually much quicker 
than maximum likelihood, and in many cases, it is very similar.  In Chapter 9 we will 
discuss the different methods in more detail. The basic idea is given here in the context of 
interval mapping 
  
Regression on QTL probability, conditional on marker haplotypes. 
 
For a given haplotype that was inherited from the sire, we can calculate the probability 
for having inherited the Q or the q allele. It seems therefore natural to regress phenotype 
on Q-probability. The model is 
    y = µ + α.x 
 
  where   y is the observed phenotype 

x is the probability of having inherited a paternal Q,  
given the observed marker genotype.  

  
The  coefficient in x is obtained as P(Q|Mi Mj) for a given QTL position. There are only 
4 different x-values, one for each haplotype (Table 4). Note that different positions give 
different coefficients. 
 
For each recorded animal, we can then give a predicted phenotype with this “QTL-
model” which is equal to 
    ii x.âˆŷ +µ=   
 
where the “hats” refer to estimated  (predicted) values. 
 
A model ignoring a QTL would predict each observation as  
 

0ˆŷ µ=   

 
where 0µ̂  is typically the general progeny mean 

  
Now let the total sum of squares (SST) be the sum (over animals) of   2

0 )ˆŷ( µ−   

 
and let the residual sum of squares (SSE) be the sum (over animals) of   2

ii )x.âˆŷ( −µ−   
 
Each map position will yield an SSE and the position with the lowest SSE is the most 
likely position. 
 
A test statistic for this method is for an experiment with n observations is  

   LR = )
SSE

SST
ln(n  

 



Chapter 7                  Interval mapping  
 

 68

where n is equal to the number of observations. The LR stands for “Likelihood Ratio”, as 
this test statistic is approximately similar to the LR from maximum likelihood. 
Haley and Knott (1992) have shown that this similarity. If there are more fixed effects in 
the model, the test statistic is calculated as  
 

   LR = )ln(
full

reduced

SSE

SSE
n  

 
Which is ration of the residual sums of squares in a model with the QTL (”full’) and a 
model without it (‘reduced’). 
 
The information about a QTL is only dependent on the flanking markers. If the QTL lays 
outside the bracket, it will only depend the nearest marker. Likelihood maps can be 
constructed for neighboring marker brackets and they should exactly match up at each 
marker, and a map of multiple intervals M1-M2-M3....-Mk is smooth.  
 
An example of interval mapping is given on the next page. 
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 Example of QTL mapping by regression:  
Data on 8 individuals with paternal marker haplotypes given. The probabilities are 
derived for different positions (dM1-Q is distance between marker 1 and QTL), with 
further the same assumptions as  in this chapter (see Table 5).
 
 
    [     X        ]     yhat       y 
 
    1.0000    1.0000   50.3656   50.9813   
    1.0000    1.0000   50.3656   49.9813 
    1.0000    1.0000   50.3656   50.7500 
    1.0000    1.0000   50.3656   49.7500 
    1.0000         0   50.1344   50.7500 
    1.0000         0   50.1344   49.7500 
    1.0000         0   50.1344   50.5187 
    1.0000         0   50.1344   49.5187 
 
     dM1-Q    SST       SSE       LR 
 

0    2.2139    2.1070    0.3961 
 
 
 
 
 
 
    1.0000    0.9718   50.4321   50.9813 
    1.0000    0.9718   50.4321   49.9813 
    1.0000    0.7451   50.3446   50.7500 
    1.0000    0.7451   50.3446   49.7500 
    1.0000    0.2549   50.1554   50.7500 
    1.0000    0.2549   50.1554   49.7500 
    1.0000    0.0282   50.0679   50.5187 
    1.0000    0.0282   50.0679   49.5187 
  
     dM1-Q    SST       SSE       LR 
 
      0.1   2.2139     2.0455    0.6331 
     
  
 
 
 
 
 
 
    1.0000    0.9625   50.4813   50.9813 
    1.0000    0.9625   50.4813   49.9813 
    1.0000    0.5000   50.2500   50.7500 
    1.0000    0.5000   50.2500   49.7500 
    1.0000    0.5000   50.2500   50.7500 
    1.0000    0.5000   50.2500   49.7500 
    1.0000    0.0375   50.0187   50.5187 
    1.0000    0.0375   50.0187   49.5187 
 
      dM1-Q    SST       SSE       LR 
 
 
      0.2    2.2139    2.0000    0.8129 
 
  
  
 
    
 
 

 
 
markers 
 
 
M1M2 
M1M2 
M1m2 
M1m2 
m1M2 
m1M2 
m1m1 
m1m1 
 
 
 
 
 
 
 
 

[   X      ]     yhat       y 
 
    1.0000    0.9718   50.4321   50.9813 
    1.0000    0.9718   50.4321   49.9813 
    1.0000    0.2549   50.1554   50.7500 
    1.0000    0.2549   50.1554   49.7500 
    1.0000    0.7451   50.3446   50.7500 
    1.0000    0.7451   50.3446   49.7500 
    1.0000    0.0282   50.0679   50.5187 
    1.0000    0.0282   50.0679   49.5187 
 
  
     dM1-Q    SST       SSE       LR 
  
     0.3   2.2139    2.0455    0.6331 
 
  
 
  
 
 
 
    1.0000    1.0000   50.3656   50.9813 
    1.0000    1.0000   50.3656   49.9813 
    1.0000         0   50.1344   50.7500 
    1.0000         0   50.1344   49.7500 
    1.0000    1.0000   50.3656   50.7500 
    1.0000    1.0000   50.3656   49.7500 
    1.0000         0   50.1344   50.5187 
    1.0000         0   50.1344   49.5187 
 
 

 dM1-Q    SST       SSE       LR 
 
        0.4   2.2139    2.1070    0.3961 
 
  

 
 


