## Deterministic Models for EBV

## Jack Dekkers



## EBV = unbiased estimate of BV Data recording



## Methods to Model Accuracy of EBV

1) EBV from own records

- simple regression

2) EBV from records on a single type of relatives

- simple regression

3) EBV from multiple sources of information

- multiple regression - selection index

4) EBV from BLUP animal model

All derivations assume records are perfectly adjusted for systematic environmental effects
(herd, season, sex, age, etc.)

Animal model EBV


Linear


Model: $\quad y=a+b_{y x} x+e$
Prediction: $\quad \hat{y}_{i}=\bar{y}+b_{y x}\left(x_{i}-\bar{x}\right)$
Regression coefficient: $\quad b_{y x}=\frac{\sigma_{x y}}{\sigma_{x}^{2}}=r_{x y} \frac{\sigma_{y}}{\sigma_{x}}$
Accuracy of prediction: $\quad r_{x y}=\frac{\sigma_{x y}}{\sqrt{\sigma_{y}^{2} \sigma_{x}^{2}}}$

## 1) EBV from own records ( $x$ )

$\hat{g_{i}}=b_{g, x} x_{i}=b_{g, x}$ (phenotype of individual)
$b_{g, x}=\sigma_{x_{i} g_{i}} / \sigma_{p}^{2}=\sigma_{g_{i}+e_{i} g_{i}} / \sigma_{p}^{2}=\sigma_{g}^{2} / \sigma_{p}^{2}=h^{2}$
$\hat{g_{i}}=h^{2} x_{i}$
Accuracy $=r=r_{g, \hat{g}}=\sigma_{g_{i}\left(h x_{i}\right)} 2_{g} / \sigma_{g} \sigma_{h} 2_{x}=h$


1) EBV from own records Effect of Heritability on Accuracy


## EBV based on the Mean of Two or more Phenotypic Records

## Definition of Repeatability

Repeated records on same individual: $x=g+p e+t e$

$$
\begin{aligned}
& p e=\text { permanent environment effect } \\
& t e=\text { temporary environment effect }
\end{aligned}
$$

Repeatability, $\boldsymbol{t}=$ prop. of total phenotypic variance that is due to permanent effects

$$
\text { (envir. + genetic) } \quad t=\frac{\sigma_{g}^{2}+\sigma_{p e}^{2}}{\sigma_{p}^{2}} \text { or } \frac{\sigma_{g}^{2}+\sigma_{p e}^{2}}{\sigma_{g}^{2}+\sigma_{p e}^{2}+\sigma_{t e}^{2}}
$$

Cow $i$ has two lactation records, $x_{i 1}$ and $x_{i 2}$

$$
\begin{aligned}
x_{i 1} & =g_{i}+p e_{i}+t e_{i 1} \\
x_{i 2} & =g_{i}+p e_{i}+t e_{i 2}
\end{aligned}
$$

Correlation between records on an individual is $r_{x_{1} x_{2}}=\frac{\sigma_{x_{1} x_{2}}}{\sqrt{\sigma_{x_{1}}^{2} \sigma_{x_{2}}^{2}}}$
and

$$
\begin{aligned}
& \sigma_{x_{1} x_{2}}=\sigma_{\left(g_{i}+p e_{i}+t e_{i 1}, g_{i}+p e_{i}+t e_{i 2}\right)}=\sigma_{g}^{2}+\sigma_{p e}^{2} \\
& r_{x_{1} x_{2}}=\frac{\sigma_{g}^{2}+\sigma_{p e}^{2}}{\sigma_{p}^{2}}=t
\end{aligned}
$$

## EBV from Repeated Records on a Single Trait

Select on mean of $m$ records: $\quad \hat{g}_{i}=b_{g, \bar{x}} \bar{x}_{i}$ where $\bar{x}_{i}=\sum_{j=1}^{m} x_{i j} / m=\sum_{j=1}^{m}\left(g_{i}+p e_{i}+t e_{i j}\right) / m$
Then,

$$
b_{g, \bar{x}}=\sigma_{g, \bar{x}} / \sigma_{\bar{x}}^{2}
$$

The variance of $\bar{x}_{i}$ is: $\quad \sigma_{\bar{x}}^{2}=\sigma_{g}^{2}+\sigma_{p e}^{2}+\frac{\sigma_{t e}^{2}}{m}=t \sigma_{p}^{2}+\frac{(1-t) \sigma_{p}^{2}}{m}=\frac{(m t+1-t) \sigma_{p}^{2}}{m}$

$$
=\frac{((m-1) t+1) \sigma_{p}^{2}}{m}
$$

The covariance is: $\sigma_{g \cdot \bar{x}}=\sigma_{g}^{2}$

Thus,

$$
b_{g \cdot \bar{x}}=\frac{m \sigma_{g}^{2}}{\sigma_{p}^{2}((m-1) t+1)}=\frac{m h^{2}}{(m-1) t+1}
$$

Accuracy is: $r=\sqrt{\frac{m h^{2}}{(m-1) t+1} \frac{\sigma_{g}^{2}}{\sigma_{g}^{2}}}=\sqrt{\frac{m h^{2}}{(m-1) t+1}}$

## 1) EBV from own records

Effect of \# records and repeatability


## 2) EBV from One Type of Relatives' Records

1 record on $m$ relatives of individual $i$
$a_{i j}=$ additive genetic relationship of each relative with individual $i$.
$a_{j j}=$ additive genetic relationship among relatives with records
2) EBV from records on one type of relative


$$
\hat{g}_{i}=b_{g . \bar{x}} \bar{x}_{i} \quad \text { where } \bar{x}_{i}=\sum_{j=1}^{m} x_{i j} / m
$$

Then,

$$
b_{g \cdot \bar{x}}=\sigma_{g . \bar{x}} / \sigma_{\bar{x}}^{2}
$$

$t=$ (intra-class) correlation between phenotypic records on $j$ and $j$ ':

$$
t=r_{x_{i j} x_{i j}}=\sigma_{x_{i j} x_{i j}} / \sigma_{p}^{2}=\sigma_{\left(g_{i j}+e_{i j j}, g_{i j}+e_{i j}\right)} / \sigma_{p}^{2}=\left(a_{j j} \sigma_{g}^{2}+c^{2} \sigma_{p}^{2}\right) / \sigma_{p}^{2}=a_{j j} h^{2}+c^{2}
$$

$c^{2}=$ common environment correlation between records $c^{2}=\sigma_{e_{i j} j_{i j}} / \sigma_{p}^{2}$
Variance of mean of $m$ records with intra-class correlation $t$ :

$$
\sigma_{\bar{x}}^{2}=\operatorname{Var}\left(\sum_{j=1}^{m} x_{i j} / m\right)=\frac{m \sigma_{p}^{2}+m(m-1) t \sigma_{p}^{2}}{m^{2}}=\frac{1+(m-1) t}{m} \sigma_{p}^{2}
$$

The covariance is: $\quad \sigma_{g . \bar{x}}=a_{i j} \sigma_{g}^{2}$
Thus,

$$
b_{g . \bar{x}}=\frac{m a_{i j} \sigma_{g}^{2}}{\sigma_{p}^{2}((m-1) t+1)}=a_{i j} \frac{m h^{2}}{(m-1) t+1}
$$

Accuracy of selection: $\quad r=a_{i j} \sqrt{\frac{m h^{2}}{(m-1) t+1}}$
For repeated own records $a_{i j}=1$ and $\mathrm{t}=$ repeatability
2) EBV from single relative record

## Effect of degree of relationship


2) EBV from records on one type of relative Effect of \# records and relationship

2) EBV from records on one type of relative

2) EBV from records on one type of relative Effect of heritability on progeny test accuracy


## 3) EBV from Multiple Sources - Selection Index

## 3) Estimating EBV from Multiple Sources of Information



## Maximizing Accuracy of EBV

Optimize weight given to each record
$g_{\text {Animal }}=b_{1} x_{\text {own }}+b_{2} x_{\text {HS }}+b_{3} x_{\text {dam }}+b_{4} x_{\text {prog }}+\ldots \ldots$
Weights by selection index theory $=$ Multiple regression Optimal weights depend on - genetic relationships

- genetic parameters of trait
- availability of other records


Selection index theory: combining information from a variety of sources to obtain the most accurate predictor of genetic merit.

Two separate types of selection indexes:

1) economic selection index: predict genetic merit for overall economic value
2) family selection index: predict genetic merit for a single trait.

## Selection Index theory

Breeding objective - maximize improvement of economic merit.

## Aggregate genotype or breeding goal

$$
\begin{aligned}
H=v_{1} g_{1}+v_{2} g_{2}+\ldots+v_{n} g_{n} & =\mathbf{v}^{\prime} \mathbf{g} \\
\mathbf{v}^{\prime}=\left[v_{1}, v_{2}, \ldots, v_{n}\right] & v_{i} \text { is economic weight for trait } i \\
\mathbf{g}^{\prime}=\left[g_{1}, g_{2}, \ldots, g_{n}\right] & g_{i} \text { is true breeding value for trait } i \\
I=b_{1} x_{1}+b_{2} x_{2}+\ldots+b_{m} x_{m} & =\mathbf{b}^{\prime} \mathbf{x} \\
\mathbf{b}^{\prime}=\left[b_{1}, b_{2}, \ldots, b_{m}\right] & \text { vector of index weights } \\
\mathbf{x}^{\prime}=\left[x_{1}, x_{2}, \ldots, x_{m}\right] & \text { vector of records }
\end{aligned}
$$

Selection index

Estimate $b_{i}$, such that: - selection on $I$ maximizes response in $H$

- $\quad r_{I, H}$ is maximized
- prediction error variance $=\operatorname{Var}(H-I)$ minimized
ex: $H=g \quad \rightarrow \mathbf{v}=[1]$

Equivalent

$$
I=\hat{g}=b_{1} x_{1}+b_{2} x_{2}+\ldots+b_{m} x_{m}
$$

## Derivation of index coefficients

Find index weights such that $\operatorname{Var}(H-I)$ is minimized

$$
\begin{aligned}
& \left.\left.E(H-I)^{2}=E[I-H)^{\prime}(I-H)\right]=E[I-H)^{\prime}(I-H)^{\prime}\right]=E\left[\left(\mathbf{b}^{\prime} \mathbf{x}-\mathbf{v}^{\prime} \mathbf{g}\right)\left(\mathbf{x}^{\prime} \mathbf{b}-\mathbf{g}^{\prime} \mathbf{v}\right)\right] \\
& =E\left[\left(\mathbf{b}^{\prime} \mathbf{x x} \mathbf{b}-\mathbf{b}^{\prime} \mathbf{x} \mathbf{g}^{\prime} \mathbf{v}-\mathbf{v}^{\prime} \mathbf{g x} \mathbf{b}+\mathbf{v}^{\prime} \mathbf{g} \mathbf{g}^{\prime} \mathbf{v}\right]\right. \\
& E\left(\mathbf{b}^{\prime} \mathbf{x x} \mathbf{b}\right)=\operatorname{Var}\left(\mathbf{b}^{\prime} \mathbf{x}\right) \quad=\operatorname{Var}(I) \quad=\mathbf{b}^{\prime} \operatorname{Var}(\mathbf{x}) \mathbf{b} \quad=\mathbf{b}^{\prime} \mathbf{P b} \quad \mathbf{P}=\operatorname{Var}(\mathbf{x}) \\
& E\left(\mathbf{b}^{\prime} \mathbf{x} \mathbf{g}^{\prime} \mathbf{v}\right)=\operatorname{Cov}\left(\mathbf{b}^{\prime} \mathbf{x}, \mathbf{g}^{\prime} \mathbf{v}\right)=\operatorname{Cov}(I, H)=\mathbf{b}^{\prime} \operatorname{Cov}(\mathbf{x}, \mathbf{g}) \mathbf{v}=\mathbf{b}^{\prime} \mathbf{G} \mathbf{v} \quad \mathbf{G}=\operatorname{Cov}(\mathbf{x}, \mathbf{g}) \\
& E\left(\mathbf{v}^{\prime} \mathbf{g x} \mathbf{x}\right)=\mathbf{v}^{\prime} \mathbf{G}^{\prime} \mathbf{b}=\mathbf{b}^{\prime} \mathbf{G} \mathbf{v} \\
& E\left(\mathbf{v}^{\prime} \mathbf{g g} \mathbf{v}^{\prime} \mathbf{v}\right)=\operatorname{Var}\left(\mathbf{v}^{\prime} \mathbf{g}\right) \quad=\operatorname{Var}(H) \quad=\mathbf{v}^{\prime} \operatorname{Var}(\mathbf{g}) \mathbf{v} \quad=\mathbf{v}^{\prime} \mathbf{C} \mathbf{v} \quad \mathbf{C}=\operatorname{Var}(\mathbf{g})
\end{aligned}
$$

$\mathbf{P}=m \times m$ matrix of phenotypic covariances among the observations in $I$
$\mathbf{G}=m \times n$ matrix of genetic covariances among $m$ observations in $I$ and the $n$ traits in $H$
$\mathbf{C}=n \times n$ matrix of genetic covariances among the $n$ traits in $H$

To find index weights, minimize $\quad M=\mathbf{b}^{\prime} \mathbf{P b}-\mathbf{2 b}^{\prime} \mathbf{G v}+\mathbf{v}^{\mathbf{\prime}} \mathbf{C v}$
$\rightarrow$ set first derivative $=0 \rightarrow \frac{\delta M}{\delta \mathbf{b}}=0=2 \mathbf{P b}-2 \mathbf{G} \mathbf{v}+0 \rightarrow \quad \mathbf{P b}=\mathbf{G} \mathbf{v}$
$\Rightarrow$ Optimal index weights found from $\mathbf{b}=\mathbf{P}^{-1} \mathbf{G} \mathbf{V}$ SELECTION INDEX EQUATIONS

Accuracy of the index $\quad r_{H I}=\frac{\sigma_{H I}}{\sigma_{I} \sigma_{H}}$

$$
\sigma_{I}^{2}=\operatorname{Var}(I)=\mathbf{b}^{\prime} \mathbf{P b}
$$

$$
r_{H I}=\frac{\sigma_{H I}}{\sigma_{I} \sigma_{H}}=\frac{\mathbf{b}^{\prime} \mathbf{G v}}{\sqrt{\mathbf{b}^{\prime} \mathbf{~ P b} \mathbf{~ v}} \mathbf{} \text { Cv}}
$$

$$
\sigma_{H}^{2}=\operatorname{Var}(H)=\mathbf{v}^{\prime} \mathbf{C} \mathbf{v}
$$

$$
\sigma_{H I}=\operatorname{Cov}(H, I)=\mathbf{b}^{\prime} \mathbf{G v}
$$

For the optimal index:

$$
b_{H I}=1=\sigma_{H I} / \sigma_{I}^{2} \quad \rightarrow \sigma_{H I}=\sigma_{I}^{2}
$$

$$
\text { and } \quad \mathbf{P b}=\mathbf{G v} \quad \rightarrow \mathbf{b}^{\prime} \mathbf{P b}=\mathbf{b}^{\prime} \mathbf{G v}
$$

$$
\rightarrow \quad r_{H I}=\frac{\sigma_{I}}{\sigma_{H}}=\sqrt{\frac{\mathbf{b}^{\prime} \mathbf{P b}}{\mathbf{v}^{\prime} \mathbf{C v}}}=\frac{\sigma_{H I}}{\sigma_{H}}=\sqrt{\frac{\mathbf{b}^{\prime} \mathbf{G v}}{\mathbf{v}^{\prime} \mathbf{C v}}}
$$

## Accuracy for Family Selection Indexes

$H=g$
$\mathbf{v}=[1]$
$\sigma_{H}^{2}=\sigma_{g}^{2}$
$\mathbf{b}=\mathbf{P}^{-1} \mathbf{G} \mathbf{v} \quad \boldsymbol{b} \quad \mathbf{b}=\mathbf{P}^{-1} \mathbf{G}$
$r_{H I}=r_{g, \dot{g}}=\sqrt{\sqrt{\frac{\mathbf{b}^{\prime} \mathbf{G}}{\sigma_{\mathbf{g}}^{2}}}}$

Example Index of individual record and full-sib mean performance
$x_{1}=$ individual's performance
$x_{2}=$ mean performance of that individual's 5 full sibs $\quad h^{2}=0.5$

By adding the mean of 5 full sibs the accuracy of evaluation is increased from 0.71 to 0.77 , i.e. by $8.9 \%$.

$$
\begin{aligned}
& I=\hat{g}=b_{1} x_{1}+b_{2} x_{2} \\
& \mathbf{P}=\left[\begin{array}{cc}
\sigma_{x_{1}}^{2} & \sigma_{x_{1} x_{2}} \\
\sigma_{x_{1} x_{2}} & \sigma_{x_{2}}^{2}
\end{array}\right] \quad \mathbf{G}=\left[\begin{array}{c}
\sigma_{x_{1} g} \\
\sigma_{x_{2} g}
\end{array}\right] \\
& \mathbf{P}=\left[\begin{array}{cc}
1 & 1 / 2 h^{2} \\
1 / 2 h^{2} & \frac{1+(m-1) \frac{1}{2} h^{2}}{m}
\end{array}\right] \sigma_{p}^{2}=\left[\begin{array}{rr}
1 & .25 \\
.25 & .4
\end{array}\right] \sigma_{p}^{2} \\
& \mathbf{G}=\left[\begin{array}{c}
h^{2} \\
1 / 2 h^{2}
\end{array}\right] \sigma_{p}^{2} \quad=\left[\begin{array}{l}
.5 \\
.25
\end{array}\right] \sigma_{p}^{2} \\
& \mathbf{b}=\mathbf{P}^{-1} \mathbf{G}=\left[\begin{array}{rr}
1 & .25 \\
.25 & .4
\end{array}\right]^{-1}\left[\begin{array}{l}
.5 \\
.25
\end{array}\right]=\left[\begin{array}{l}
.4074 \\
.3704
\end{array}\right] \\
& I=\hat{g}=0.4074 x_{1}+0.3704 x_{2} \\
& r_{H I}=r_{g, \hat{\mathrm{~g}}}=\sqrt{\frac{\mathbf{b}^{\prime} \mathbf{G}}{\sigma_{\mathrm{g}}^{2}}}=\sqrt{\frac{\left[\begin{array}{c}
.4074 \\
\hline .3704
\end{array}\right]\left[\begin{array}{l}
.5 \\
.25
\end{array}\right] \sigma_{p}^{2}}{0.5 \sigma_{\mathrm{p}}^{2}}}=0.77
\end{aligned}
$$

Correlation between relatives: Correlation between index values of two relatives, $i$ and $j$,

$$
t_{i, j}=\operatorname{corr}\left(I_{i}, I_{j}\right)=\operatorname{corr}\left(\mathbf{b}^{\prime} \mathbf{x}_{i}, \mathbf{b}^{\prime} \mathbf{x}_{j}\right)=\frac{\mathbf{b}^{\prime} \operatorname{cov}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \mathbf{b}}{\mathbf{b}^{\prime} \mathbf{P b}}=\frac{\mathbf{b}^{\prime} \mathbf{R b}}{\mathbf{b}^{\prime} \mathbf{P b}}
$$

$\mathbf{R}=m \times m$ matrix with covariances between information sources on the relatives

## Summary of selection index formulae for any index and for the optimum index

| Parameters | Any Index | Optimal Index |  |
| :--- | :---: | :---: | :---: |
| Index weights | $\mathbf{b}$ | Arbitrary | $\mathbf{b}=\mathbf{P}^{-1} \mathbf{G v}$ |
| Index variance | $\sigma_{I}^{2}$ | $\mathbf{b}^{\prime} \mathbf{P b}$ | $\mathbf{b}^{\prime} \mathbf{P b}=\mathbf{b}^{\prime} \mathbf{G v}$ |
| Breeding goal var. | $\sigma_{H}^{2}$ | $\mathbf{v}^{\prime} \mathbf{C v}$ | $\mathbf{v}^{\prime} \mathbf{C v}$ |
| Goal-index covar. | $\sigma_{H I}$ | $\mathbf{b}^{\prime} \mathbf{G v}$ | $\mathbf{b}^{\prime} \mathbf{G v}$ |
| Accuracy | $r_{H I}$ | $\frac{\mathbf{b}^{\prime} \mathbf{G v}}{\sqrt{\mathbf{b}^{\prime} \mathbf{P b} \mathbf{v} \mathbf{~} \mathbf{C v}}}$ | $\sqrt{\frac{\mathbf{b}^{\prime} \mathbf{G} \mathbf{v}}{\mathbf{v}^{\prime} \mathbf{C} \mathbf{v}}}=\sqrt{\frac{\mathbf{b}^{\prime} \mathbf{P b}}{\mathbf{v}^{\prime} \mathbf{C v}}}=\frac{\sigma_{I}}{\sigma_{H}}$ |

## General equations to derive elements of selection index matrices

$m=$ number of records within a group
$\sigma_{p_{k}}=$ phenotypic standard deviation of trait $k$
$r_{p_{k l}}=$ phenotypic correlation between traits $k$ and $l$
$a=$ genetic relationship within a group
$a=$ genetic relationship within a group $\quad a_{i j}=$ relationship between groups $i$ and $j$
$a_{h j}=$ additive genetic relationship between individual in breeding goal $(h)$ and individuals in group $j$
P-matrix

- Variance of $m$ records of a given type

$$
\frac{1+(m-1) t}{m} \sigma_{p}^{2} \quad\left(=\sigma_{p}^{2} \text { for } m=1\right)
$$

$c^{2}=$ common environment component
$\sigma_{\delta_{k}}=$ genetic standard deviation of trait $k$
$r_{g_{k l}}=$ genetic correlation between traits $k$ and $l$

## diagonal:

$t=$ repeatability for repeated records
$t=a h^{2}+c^{2}$ for multiple individuals
off-diagonal:

- Covariance between mean of $m$ records on different traits ( $k$ and $l$ ) for same group:

$$
\frac{r_{p_{k}} \sigma_{p_{k}} \sigma_{p_{l}}+(m-1) a r_{g_{k}} \sigma_{g_{k}} \sigma_{g_{l}}}{m} \quad\left(=r_{p_{k l}} \sigma_{p_{k}} \sigma_{p_{l}} \text { for } m=1\right)
$$

- Covariance between (mean of) record(s) on same trait $k$ for different groups ( $i$ and $j$ ):

$$
\left(a_{i j} h_{k}^{2}+c_{k}^{2}\right) \sigma_{p_{k}}^{2}
$$

- Between records on different traits ( $k$ and $l$ ) in different groups ( $i$ and $j$ ):

$$
a_{i j} r_{g_{k l}} \sigma_{g_{k}} \sigma_{g_{l}}
$$

## G-matrix

- Covariance of the genetic value for trait $k$ on the breeding goal animal ( $h$ ) with records on trait $l$ for group $j$

$$
a_{h j} r_{g_{k}} \sigma_{g_{k}} \sigma_{g_{l}} \quad\left(=a_{h j} \sigma_{g_{k}}^{2} \text { if } k=l\right)
$$

## C-matrix

- diagonal: Variance of genetic value for trait $k$

$$
\sigma_{g_{k}}^{2}
$$

- off-diagonal: Covariance between genetic values for traits $k$ and $l$ on breeding goal animal

$$
r_{g_{k l}} \sigma_{g_{k}} \sigma_{g_{l}}
$$

## 4) Selection Index and Animal Model BLUP - Pseudo BLUP EBV

Two approaches to modeling Animal model BLUP EBV using selection index:

1) Selection index based on relatives providing the greatest amount of information
2) Pseudo-BLUP: Selection index that includes parental EBV as sources of information, along with records on the individual itself, collateral relatives, and progeny.

Information sources:
$x_{i}=$ animal's own record,
$x_{f s}=$ average of $n-1$ full sibs
$x_{h s}=$ average of $(m-1) n$ half sibs
$\hat{g}_{s}=$ EBV of the sire
$\hat{g}_{d}=\mathrm{EBV}$ of the dam
$\overline{\hat{g}}_{m}=$ average EBV of ( $m-1$ ) mates of the sire that produced the half
 sibs

Pseudo BLUP EBV $=\quad I_{i}=\hat{g}_{i}=b_{1} x_{i}+b_{2} x_{f s}+b_{3} x_{h s}+b_{4} \hat{g}_{s}+b_{5} \hat{g}_{d}+b_{6} \overline{\hat{g}}_{m}$

$$
\mathbf{P}=\left[\begin{array}{cccccc}
\sigma_{x_{i}}^{2} & \sigma_{x_{i} x_{f s}} & \sigma_{x_{i} x_{h s}} & \sigma_{x_{i} \hat{g}_{s}} & \sigma_{x_{i} \hat{g}_{d}} & \sigma_{x_{i} \overline{\hat{g}}_{m}} \\
& \sigma_{x_{f s}}^{2} & \sigma_{x_{f s} x_{h s}} & \sigma_{x_{f s} \hat{g}_{s}} & \sigma_{x_{f s} \hat{g}_{d}} & \sigma_{x_{j s} \overline{\hat{g}}_{m}} \\
& & \sigma_{x_{h s}}^{2} & \sigma_{x_{h s} \hat{g}_{s}} & \sigma_{x_{h s} \hat{g}_{d}} & \sigma_{x_{h s} \overline{\hat{g}}_{m}} \\
& & & \sigma_{\hat{g}_{s}} & \sigma_{\hat{g}_{s} \hat{g}_{d}} & \sigma_{\hat{g}_{s} \overline{\hat{g}}_{m}} \\
& & & & \sigma_{\hat{g}_{d}}^{2} & \sigma_{\hat{g}_{d} \overline{\hat{g}}_{m}} \\
& & & & & \sigma^{2} \overline{\hat{g}}_{m}
\end{array}\right]
$$

$$
\mathbf{P}=\left[\begin{array}{cccccc}
1 & \begin{array}{c}
1 / 2 \\
2
\end{array} h^{2}+c^{2} \\
& \frac{1+(n-2)\left({ }^{1} / 2 h^{2}+c^{2}\right)}{n-1} & 1 / 4 h^{2} & 1 / 2 r_{s}^{2} h^{2} & 1 / 2 r_{d}^{2} h^{2} & 0 \\
& & 1 /{ }_{4} h^{2} & { }^{1} / r_{s}^{2} h^{2} & 1 / 2 r_{d}^{2} h^{2} & 0 \\
& & 1 / 4 h^{2}+\frac{1 / 4 h^{2}+c^{2}}{m-1}+\frac{1-{ }^{1} / 2 h^{2}-c^{2}}{n(m-1)} & { }^{1} /{ }_{2} r_{s}^{2} h^{2} & 0 & \frac{1 / 2 r_{m}^{2} h^{2}}{m-1} \\
& & & r_{s}^{2} h^{2} & 0 & 0 \\
& & & & r_{d}^{2} h^{2} & 0 \\
& & & & & \frac{r_{m}^{2} h^{2}}{m-1}
\end{array}\right] \sigma_{p}^{2}
$$

$\mathbf{G}=\left[\begin{array}{llllll}\sigma_{g_{i} x_{i}} & \sigma_{g_{i} x_{f s}} & \sigma_{g_{i} x_{h s}} & \sigma_{g_{i} \hat{g}_{s}} & \sigma_{g_{i} \hat{g}_{d}} & \sigma_{g_{i} \overline{\hat{g}}_{m}}\end{array}\right]$

$$
\begin{gathered}
\mathbf{G}=\left\lfloor\begin{array}{lllll}
h^{2} & 1 / 2 h^{2} & 1 /{ }_{4} h^{2} & 1 /{ }_{2} r_{s}^{2} h^{2} & 1 / 2 r_{d}^{2} h^{2}
\end{array} \quad 0\right\rfloor \sigma_{p}^{2} \\
\mathbf{b}=\mathbf{P}^{-1} \mathbf{G}
\end{gathered}
$$

$$
x_{h s}=\left(\sum_{k=1}^{m-1} \sum_{l=1}^{n} \frac{x_{k l}}{n}\right) /(m-1)
$$

Where

$$
x_{k l}=1 / 2 g_{s}+1 / 2 g_{d_{k}}+g_{m s_{k l}}+c_{k l}+e_{k l}
$$

Thus

$$
x_{h s}=1 / 2 \mathbf{g}_{s}+1 / 2 \frac{\sum_{k=1}^{m-1}\left(g_{d_{k}}+c_{k}\right)}{m-1}+\frac{\sum_{k=1}^{m-1} \sum_{l=1}^{n}\left(g_{m s_{k l}}+e_{k l}\right)}{n(m-1)}
$$

And

$$
\sigma_{x_{h s}}^{2}={ }^{1} /{ }_{4} \sigma_{g}^{2}+\frac{{ }^{1} /{ }_{4} \sigma_{g}^{2}+c^{2}}{m-1}+\frac{{ }^{1} /{ }_{2} \sigma_{g}^{2}+\sigma_{\mathrm{e}}^{2}}{n(m-1)}
$$

Also,

$$
\sigma_{\hat{g}}^{2}=r_{g, \hat{g}}^{2} \sigma_{g}^{2}
$$

And

$$
\sigma_{x_{i} \hat{g}_{s}}=\sigma_{\left(1 / 2 g_{s}+1 / 2 g_{d}+g_{m_{i}}+e_{i}, \hat{g}_{s}\right)}=\sigma_{\left(1 / 2 g_{s}, \hat{g}_{s}\right)}=1 /{ }_{2} \sigma_{g_{s}, \hat{\mathrm{~g}}_{s}}=1 / 2 r_{s}^{2} \sigma_{g}^{2}
$$



## Some general properties of EBV

## Unbiased: <br> $$
E\left(g_{i} \mid \hat{g}_{i}\right)=\hat{g}_{i}
$$

selection on $\hat{g}$ maximizes $E(g)$ for the group of selected individuals
Regression of true on EBV = 1:
$b_{g, \hat{\mathrm{z}}}=1$
Accuracy of EBV:
$r=r_{g, \hat{g}}=b_{g \dot{\hat{g}}} \frac{\sigma_{\hat{g}}}{\sigma_{g}}=\quad \frac{\sigma_{\hat{g}}}{\sigma_{g}}$
Covariance between true and EBV:
$\sigma_{g, \hat{\mathrm{~g}}}=r_{g, \hat{\mathrm{~g}}} \sigma_{g} \sigma_{\hat{g}}=\sigma_{\hat{g}}^{2}$
Variance of EBV:
$\sigma_{\hat{\delta}}^{2}=r^{2} \sigma_{g}^{2}$


## Prediction error: <br> $$
\varepsilon_{i}=g_{i}-\hat{g}_{i}
$$

Variance of prediction errors: $\sigma_{\varepsilon}^{2}=\sigma_{\hat{g}}^{2}+\sigma_{g}^{2}-2 \sigma_{g, \hat{g}}=\sigma_{\hat{g}}^{2}+\sigma_{g}^{2}-2 \sigma_{\hat{g}}^{2}=\sigma_{g}^{2}-\sigma_{\hat{g}}^{2}=\sigma_{g}^{2}-r^{2} \sigma_{g}^{2}$

$$
=\left(1-r^{2}\right) \sigma_{g}^{2} \quad \text { Note that } \quad \sigma_{g}^{2}=\sigma_{\hat{g}}^{2}+\sigma_{\varepsilon}^{2}
$$

Covariance between EBV and prediction errors:

$$
\sigma_{\hat{g}, \varepsilon}=\sigma_{\hat{g}, \hat{g}-g}=\sigma_{\hat{g}}^{2}-\sigma_{g, \hat{g}}=\sigma_{\hat{g}}^{2}-\sigma_{\hat{g}}^{2}=0
$$

Dist'n of true BV given EBV: $g_{i} \mid \hat{g}_{i} \sim \mathrm{~N}\left(\hat{g}_{i},\left(1-r^{2}\right) \sigma_{g}^{2}\right)$
Dist'n prediction errors: $\varepsilon_{i} \sim \mathrm{~N}\left(0,\left(1-r^{2}\right) \sigma_{g}^{2}\right)$


## Effect of Accuracy on Distribution of True BV for animals with a given B̂




