Genomic information and inbreeding

AABSC

Inbreeding-revision

- Mating of relatives
- Consequences
 - Many are bad, but not all.....
- Management restricting mating of relatives
 - Optimal contribution selection

- How does Genomics change this?
 - If performing truncation selection....
 - If performing optimal contribution selection...

Truncation selection

• TBLUP or Pedigree BLUP

• Genomic breeding value (GBLUP)

• Variation in BV among selection candidates

Va = ¼ sire + ¼ dam + ½ MS

Vs

What information is used in BVs

Va= ¼ sire + ¼ dam + ½ MS

Across family

Within Family

 Table 2- The proportion of variation in breeding value explained by between family (Sire and Dam) and within family (MS) information.

/	/		LIC					ADI	HIS
BV	Sire	Dam	MS+e	Prop. of PT	BV	Sire	Dam	MS+e	Prop. of PT
PA EBV	0.56	0.44	0.001	0.001	PA EBV	0.44	0.52	0.04	0.05
GEBV	0.43	0.26	0.31	0.56	GEBV	0.33	0.37	0.30	0.36
РТ	0.21	0.31	0.48	1.0	РТ	0.16	0.32	0.52	1.0

Correlation of breeding values and co-selection of relatives

Breeding value type	Half sib correlation	Full Sib correlation	Accuracy
PA EBV	0.55	1.0	0.45
GEBV	0.50	0.85	0.57
TBV	0.26	0.53	1.0

Full Sibs
- share the same Parent average BV (½ sire ½ dam)
- no longer the case with genomics

Half Sibs - Share different PA breeding values

- Small advantage of using G to restrict inbreeding

Truncation selection on breeding values estimated using TBLUP or GBLUP						
		Inbreeding				
Breeding value estimation	ΔG (se)	ΔF _{ped} (se)	ΔF _{IBD} (se)			
TBLUP	2.49 (0.035)	0.0156 (0.0001)	0.0235 (0.0009)			
GBLUP	2.77 (0.026)	0.0053 (0.0002)	0.0209 (0.0005)			

Genomics and Optimal contributions

- Measures of genetic merit (g)
 - Pedigree vs genomic
 Pedigree based BLUP --- Genomic BLUP
- Measures of inbreeding
 - Pedigree vs genomic (A or G) NRM (Pedigree) --- GRM (genomic)

$$\mathbf{Max} = \mathbf{c}_{t}^{'} \bar{\mathbf{g}}_{t} - \lambda \mathbf{c}_{t}^{'} \mathbf{A}_{t} \mathbf{c}_{t}$$

Measuring inbreeding

• Pedigree

- The probability that animals share alleles IBD.

- Genomics
 - GRM (IBS) or what is shared.
 - others

Genomic Inbreeding estimates

- Estimates of the number of homozygotes
 - Sharing of markers (IBS)
 - Long runs of homozygotes (more IBD)

- Genomic relationships (IBS)
 - Various methods
 - Choice of allele frequencies

Example GRM

- Z=M-2(pi-0.5)
- ZZ'/2* sum pi(qi) (more weighting to rare alleles)
- Choice of allele frequencies
 - Forni 2012
 - Sets base population
 - Although this is relative and is more important when combining data (Single step)

management

• Optimal contribution

- Pedigree or genomic
 - Pedigree expected based on IBD prob.
 - Genomic observed (although an estimate)

Ntest	ΔF _d	ΔG (se)	ΔF_{ped} (se)	ΔF _{IBD} (se)
		ΔF _A constraint – GBL	JP	
3000	0.005	3.08 (0.035)	0.0050 (0.0001)	0.0211 (0.0004
6000	0.005	3.10 (0.035)	0.0048 (0.0001)	0.0226 (0.0004)
6000	0.010	3.31 (0.037)	0.0098 (0.0003)	0.0422 (0.0008)
		ΔF _G constraint – GBL	JP	
3000	0.005	1.91 (0.026)	0.0041 (0.0001)	0.0051 (0.0001)
6000	0.005	1.95 (0.024)	0.0039 (0.0001)	0.0053 (0.0001)
6000	0.010	2.41 (0.028)	0.0071 (0.0002)	0.0102 (0.0002)
		ΔF _A constraint – TBLU	IP	
3000	0.005	2.26 (0.003)	0.0050 (0.0001)	0.0068 (0.0001)
6000	0.005	2.50 (0.003)	0.0049 (0.0001)	0.0074 (0.0001)
0.010		2.63 (0.003)	2.63 (0.003) 0.0102 (0.0002)	
		ΔF _G constraint – TBLU	IP	
3000	0.005	1.41 (0.041)	0.0193 (0.0004)	0.0121 (0.0002)
6000	0.005	1.44 (0.039)	0.0185 (0.0004)	0.0122 (0.0002)
6000	0.010	1.48 (0.046)	0.0300 (0.0008)	0.0183 (0.0003

Genomic information helps to manage inbreeding

- In two ways:
- 1. Using genomic relationships helps to restrict genomic inbreeding.

• 2. GEBV's utilize more Mendelian sampling variance.