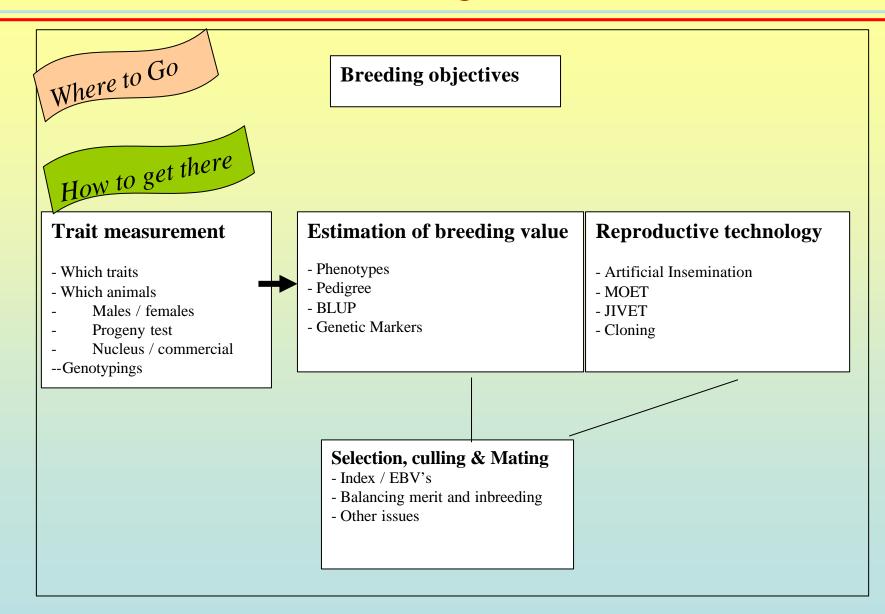
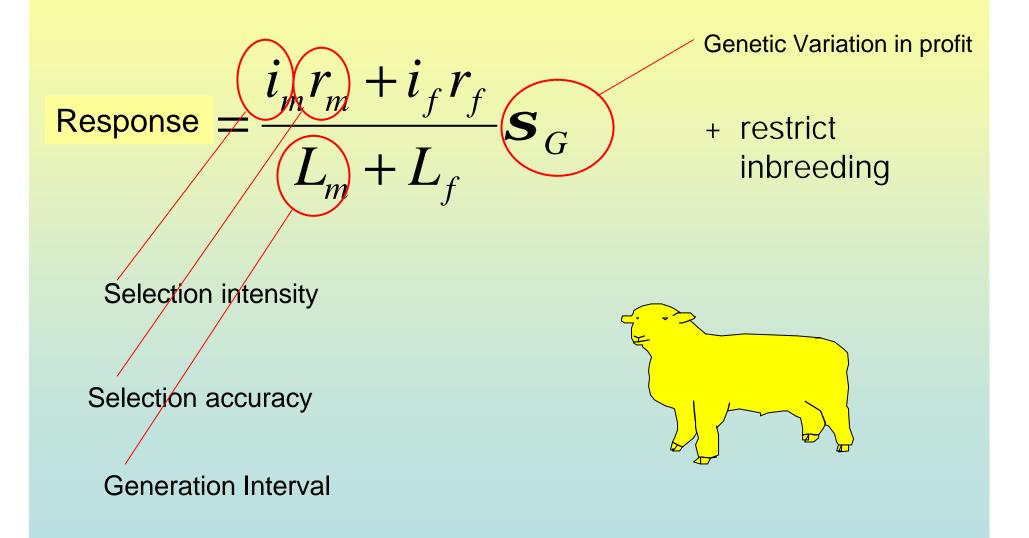
Optimizing Breeding Program Design

Julius van der Werf School of Rural Science and Agriculture University of New England Armidale, Australia

Outline / Introduction


• What is a Good Breeding Program

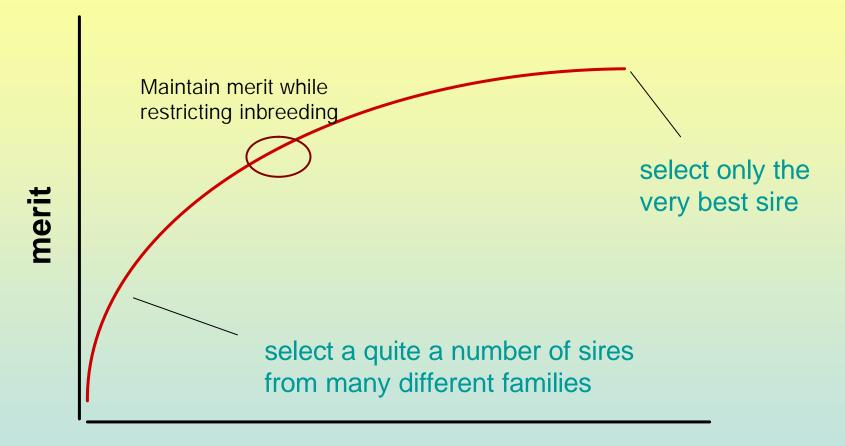
- What are design issues?
- What kind of decisions are involved?


Outline

- What is a *Good* Breeding Program
- What are design issues?
- What kind of decisions are involved? measurement / selection
- New Technologies
 - Genetic Markers
 - Reproductive technologies
- Their *joint* effect on breeding programs

Animal Breeding in a Nutshell

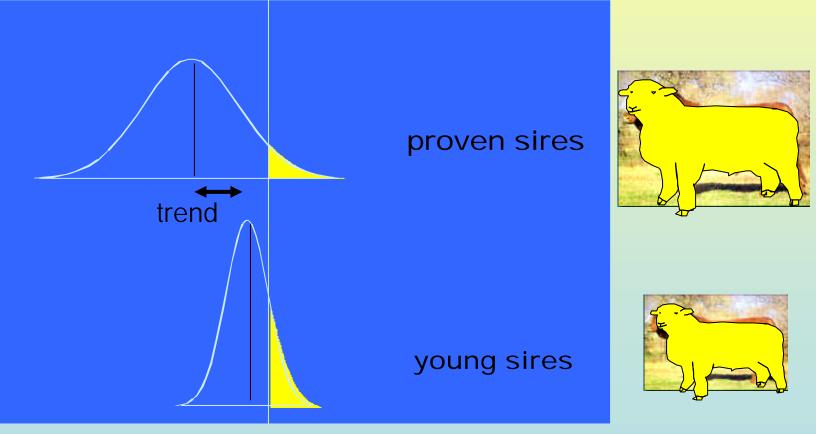
The framework of genetic improvement


The balancing act of genetic improvement

Selection intensity vs risk/ inbreeding / diversity

Selection accuracy vs generation interval

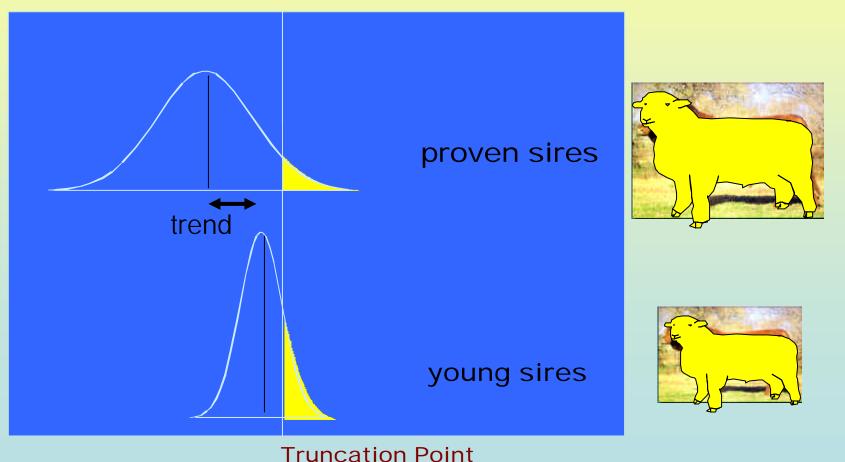
One trait versus another


Balancing inbreeding and merit

inbreeding rate / diversity

Optimizing Generation Interval

• Dilemma between young and old sires



Truncation Point

Genetic Evaluation helps

BLUP EBV Optimizes generation interval

• Dilemma between young and old sires

Breeding Objectives

 $Index = a_1 EBV_{MFD} + a_2 EBV_{FW+} \dots + a_m EBV_{NLW}$ Economic values

Some useful terms

- Tactical vs strategic optimization
 - (e.g. BLUP vs Selection Index)

Modeling:

- Stochastic vs
 - Easier
 - More accurate
 - More CPU
 - Not so suitable for optimization
 - Variation in outcome

Deterministic
More complex
Need to approximate
Less CPU
Can optimize
One outcome

(Stochastic) Modeling of BP

- Draw a base population $A_i = [0; V_A]$
- Give the phenotypes $P_i = A_i + E_i$
- **Select** = *f*(*BLUP*-EBV, EBV + QTL, Inbreeding)
- Mate (random/ assortative)

N generations

• Define offspring $A_i = .5A_s + .5A_d + MS$

$$\frac{1}{2}(1-\frac{1}{2}(F_s+F_d)V_A)$$

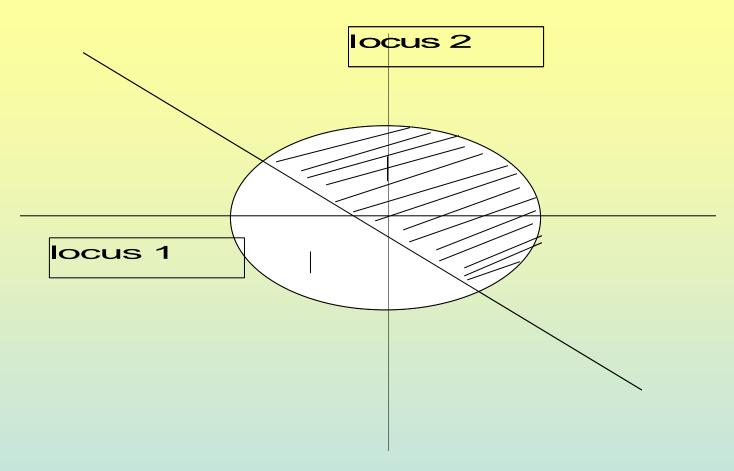
Deterministic Models

- Predict within and between family variance
- Predict selection intensity
- Predict inbreeding
- Predict selection accuracy based on BLUP "pseudo BLUP"

Components of dG

- Genetic Variance
- Selection Intensity
- Selection Accuracy
- Generation Interval

Genetic Variance: Loss of variance due to selection


- Variance among selected individuals is lower
- Selected parents have a reduced variance

•
$$V_{Ps} = (1-k) V_p$$
 $k = i (i-x)$

• "Bulmer Effect": Also their genetic variance is lower

 V_A in selected group is reduced to(1- r² k).

r = selection accuracy

Note:

Negative Covariance after selection

Effect of selection on V_A

$$\mathbf{s}_{A_{t_{-}sel}}^{2} = (1 - r^{2}k)\mathbf{s}_{A_{t}}^{2}$$

Effect of selection in next generation

full residual variancebut genetic variance is still reduced

Only part coming from parents is reduced

New variance is generated due to *Mendelian Sampling* This is NOT affected by selection"Bulmer Effect":

$$\sigma_{A_{t+1}}^2 = \frac{1}{4} \sigma_{As_t}^2 + \frac{1}{4} \sigma_{Ad_t}^2 + \frac{1}{2} \sigma_{A0}^2$$

Variance over time

$$\sigma_{A_{t+1}}^{2} = \frac{1}{4} \sigma_{As_{t}}^{2} + \frac{1}{4} \sigma_{Ad_{t}}^{2} + \frac{1}{2} \sigma_{A0}^{2}$$

(P-males=10%, P-females = 50%)

Gen	VA	V(sire)	V(dam)	Herit	Mean	R
1	1.00	0.58	0.68	0.50	0.00	0.90
2	0.82	0.51	0.58	0.45	0.90	0.77
3	0.77	0.49	0.56	0.44	1.68	0.74
4	0.76	0.49	0.55	0.43	2.42	0.73
5	0.76	0.49	0.55	0.43	3.15	0.73
6	0.76	0.49	0.55	0.43	3.88	0.73
7	0.76	0.49	0.55	0.43	4.61	0.73
8	0.76	0.49	0.55	0.43	5.34	0.73
9	0.76	0.49	0.55	0.43	6.08	0.73
10	0.76	0.49	0.55	0.43	6.81	0.73

Note

Only need to worry about this in deterministic simulation

Selection intensity (i)

- i is lower in finite populations
 - Order statistics effect
 - Not a large effect
- i is lower when EBVs are correlated
 - More important, esp. when correlation are high
 - And note that they can be high!!!

Order statistics effects - mainly in very small groups/ populations -

Population size	Selected fraction				
	P=2%	P = 10%	P= 50%		
2	-	-	0.564		
4	-	-	0.663		
10	-	1.539	0.739		
20	-	1.638	0.767		
50	2.249	1.705	0.785		
100	2.328	1.73	0.791		
400	2.396	1.75	0.796		
infinite	2.421	1.755	0.798		

For a good approximation, use Burrow's formula

$$\mathbf{i}_{\infty} - \frac{1-\mathbf{p}}{2*\mathbf{i}_{\infty}*\mathbf{p}*(\mathbf{N}+1)}$$

Effect of correlated EBVs - family structure -

How much do correlations reduce the selection intensity

 $i_r(t) = \sqrt{(1-t).i(0)}$

Rawlings (1976)

For f families each with n_f individuals

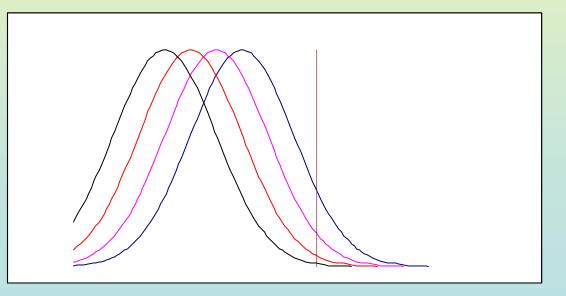
$$i_r(t) = \sqrt{1 - \frac{t(n_f - 1)}{n_f f - 1}}i(0)$$

or

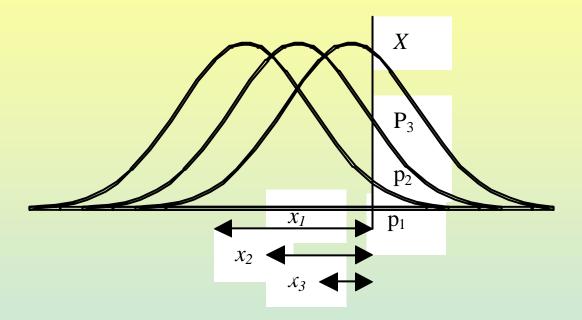
$$i_r(t) = \sqrt{(1 - t_{av})}i(0)$$

t_{av} is the average correlation between EBV's in the population

Overestimates si when t_{av} is high!


Meuwissen 1991

Selection Accuracy


- Pseudo BLUP
 - Selection Index
 - Iterated to accommodate EBV parents
- Note that different age classes have different r

Overlapping Generations

- Selection across age classes
 - Different means (how much?)
 - Different SD?

An algorithm for finding common truncation point

					Proportion	Nr	Mean of	
	ageclass	N in group	mean	SD	Selected	Selected	selected	_
	1	50	10	1	0.28	14.17	11.18	
	2	35	9.5	1	0.14	4.96	11.03	
	3	15	9	1	0.06	0.87	10.74	
_						20.0	11.12	mean of selected

Summary

- Need a deterministic model that predicts and optimizes genetic gain
 - Selection intensity
 - Selection accuracy
 - Generation intervals
 - Genetic Variation after selection
 - Inbreeding