Inbreeding

Genetic gain versus genetic diversity

 Sustainable breeding programs require optimal selection balancing genetic gain and genetic diversity

• Potential short term benefits from reproductive technologies are inhibited by the need to maintain diversity

The balance between increased merit and inbreeding

Optimum Selection Strategies

- Maintain effective size of population
- Optimized selection (BLUP ~ co-ancestry)
 - Can be done tactically
 - Hard to implement in deterministic modeling
 - Can predict inbreeding from genetic contributions theory

So, previous slide illustrates

Inbreeding coefficient

Animals that have related parents have more chance to carry two alleles that are identical by descend

Genetic defects

Inbred individuals have more chance to express genetic defects

• Inbreeding depression:

Heterozygosity has often positive effects on phenotypes (and therefore inbreeding/homozygosity a negative effect >>

Further Inbred populations have less genetic variance

Change in genotype frequencies in response to inbreeding

• For example, p=q=0.5

Genotype	aa	Aa	AA
Frequency	q²+pqF	2pq-2pqF	p²+pqF
At F=0	0.25	0.50	0.25
At F=0.5	0.375	0.25	0.375
At F=1.0	0.5	0	0.5

Note that allele frequencies do not change

Consequences of inbreeding

Increased frequency of 'genetic defects'

Let q be equal t	o 1%.	We have	then
--------------------	-------	---------	------

F of individual	Frequency of <i>aa</i>	Probability of being affected		
0 (normal)	q^2	1 in 10,000		
0.125	$q^2 + pqF$	13.4 in 10,000		
0.25	$q^2 + pqF$	25.8 in 10,000		

Inbreeding depression reduces productivity & viability

- Inbreeding depression
 - Due to increased homozygosity, in relation to traits that show dominance
 - Most notable effect is on reproductive fitness
- Inbreeding depression is typically greater in the wild than in captivity
 - Trait depression variable, often 2-20% per 10% F

Inbreeding reduces genetic variance

- As individuals become more alike, the *within* population genetic variance decreases
- V_A is additive genetic variance
- V_A (with inbreeding) = (1-F) V_A (without inbreeding)

Predicting rate of inbreeding from population size and structure

- Predict population mean F after some generations
- Inbreeding occurs more frequently in small populations as there is a larger chance for an individual to mate with a related individual.

Calculating N_e

Accounting for unequal sex ratio

 Effective pop'n size (Ne) reduces towards sex with fewer breeding individuals

$$Ne = \frac{4.N_m N_f}{N_m + N_f}$$

Males / generation	2	2	2	5	20	1
Females / generation	2	20	200	200	200	99999
Ν	4	22	202	205	220	100,000
Ne	4	7.3	7.9	19.5	72.7	4

Inbreeding rate & Effective Size (Ne)

More sophistication in predicting inbreeding rate

- variation in family size -

$$N_e = \frac{8N}{V_{km} + V_{kf} + 4}$$

With selection \rightarrow makes dF a few times higher

- genetic contributions theory

Avoiding inbreeding

• Mating strategies ?

- Manage effective populations size
 - Nr of parents selected (.....males)
 - Relatedness of selected animals
 - Nr. of Offspring per sire (think of V_{km})

Balancing Selection and Inbreeding

- Higher selection intensities make bigger gain
- Fewer animals are selected, so also more inbreeding
- This trend is more evident with higher rates of fecundity
- Effect of new reproductive technologies
- Genetic evaluation (BLUP) favors selection of related animals
- rationalization of selection make inbreeding restriction methods a necessity

Why restrict inbreeding

- Avoid loss of genetic variation/genetic diversity
- Inbreeding depression
- Increase of homozygotes with deleterious recessives
- Inbreeding is closely associated with risk (and genetic drift)

How to restrict inbreeding?

- Mating policies mostly affect
 - progeny inbreeding (*short term*)
 - but not *long term* rate of inbreeding ΔF
 - The long term inbreeding rate depends on *effective population size*
- Long term inbreeding is restricted by restricting the average co-ancestry among selected parents
 →Manage effective populations size
 - Nr of parents selected (.....males)
 - Relatedness of selected animals
 - Nr. of Offspring per sire (think of V_{km})

Balancing inbreeding and merit

- Restricting co-ancestry but this slows genetic (short term) progress
- How much inbreeding can we afford?
- Often inbreeding is restricted by limiting ΔF to a certain preset value
- This optimal value may depend on your situation (how open is your nucleus)

Balancing inbreeding and merit

inbreeding or co-ancestry

Jointly optimizing merit and inbreeding

In notes this x is a "c" p186

- merit: x'G
 - x = vector with each animal's contribution to progeny
 - G = the vector with merit (EBV's) for each animal

- Co-ancestry: x'Ax
 - x = vector with each animal's contribution to progeny
 - A = Numerator Relaionships Matrix

Remember: $\Delta F = x' Ax/2$ $F_i = 0.5 a_{ij}$

Vector *x* of animal contributions

Optimizing genetic contributions

• Maximize objective function

$$x'G - \underline{\lambda}x'Ax$$

Question: what is best value for λ ?

Could preset rate of inbreeding (e.g. 1%)
and determine λ accordingly (Meuwissen, 1997)
Alternative: look at graph (next slide)

inbreeding or co-ancestry

Genetic Contributions Theory

- Contribution of an ancestor to future gene pool c_i
- After many generations, all animals within a drop have the same c_i from ancestor i.
- $C_i = a + \beta$. u_i contribution depends on EBV (= u_i)
- Exp. gain depends on sum of c_iu_i
- Exp. Inbreeding depends on sum of c_i^2
- Can predict based on selection on phenotype, or BLUP, but not based on optimal selection