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4. GENOME-ENABLED PREDICTION
BAYES A, BAYES B, LASSO

Standard analysis (fixed X)

Genotypic value (signal from genome)

y  f  e  X  e

|
2  N0, I

2 

Ey|X,  X

Ey|X  0

Vary|X,e
2 ,

2  XX ′
2  Ie

2

Assumption

Bayesian or Frequentist?
(more later)
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Frequentist: random
effects model

Frequentist: conditional
distribution

Frequentist:  mean of conditional 
distribution (BLUP here)
Bayesian: mean of conditional 
posterior distribution

Frequentist: estimate var. comp by, e.g., REML
Bayesian: use posterior distributions

X ′X  e
2

2
I

  X ′y

I  e
2

2
X ′X−1 

  X ′X−1X ′y


  I  e

2

2
X′X−1

−1
OLS  SHRINKAGE

P re d ic t io n o f s ig n a l X   to p h e n o ty p e

Prediction of marker effects: BLUP
(iid marker effects)

VarX|y  XVar|yX ′

 X I  e
2


2
X ′X−1

−1

X ′e
2

Assume inverse exists
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Prediction of future record

y∗  X∗  e∗

EX∗  e∗|y,X,X∗   X∗E|y,X

 X∗ I  e
2

2
X ′X−1

−1
OLS

VarX∗  e∗ |y,X,X∗   X∗Var|y,XX∗  I∗e
2

y  f  e  X  e

f  N0,Varf Varf  XX ′Var

Vary|X  XX ′Var  Ie
2

BLUPf  Covf,y ′XX ′Var  Ie
2−1y

 XX ′VarXX ′Var  Ie
2−1y

 I  XX ′−1 e
2

Var

−1

y

I  XX ′−1 e
2

Var
BLUPf  y

1. Standard BLUP of signal (f)

2. Morph into genomic BLUP a la Van Raden

X is fixed here

G  X−EXX−EX′

2∑
j1

p

pj1−pj

 X∗X∗′

VM,HW

I  G−1 e
2

Var/VM,HW

g  y

Center using allelic
frequency informationX is random here,

but so is β

IS THIS METAMORPHOSIS DONE CORRECTLY? I DO NOT THIK SO
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GAUSSIAN PROCESS ANALYSIS (IID MARKER EFFECTS)

y  f  e  X  e

  N0, I
2 

X  F

Ey|X,  X

Ey|  EXEy|X,  EX

Ey  EEX  EXE  0

[Genotypes vary at random: population Genetics]

[Read Falconer and Mackay IQG]

Big assumption

Are frequencies effect-dependent? Are effects frequency dependent?
TURELLI, ZHANG&HILL, MACKAY WITH MARKERS AND  

Vary  Varf  Vare  Varf   Ie
2

Varf  VarX

 EXVarX|X  VarXEX|X

 EXXVarX ′   VarXXE

 EXXX ′
2   VarX0

 2 EXXX ′,


f  BPf

1
e

2
I  Var−1f


f  1

e
2

y

I  e
2

2
EX
−1XX′ 


f  y

EX
−1XX ′ EXXX ′  e

2


2

I

f  y

EXXX ′  e
2


2

I

f  EXXX ′y

BP= “best predictor”
(MULVN assumed)Covariance

matrix of signal

Looks like
genomic BLUP
(it is not)
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Varf|y  Varf − Covf,yVar−1yCov ′f,y

 Varf − VarfVarf  Ie
2−1Varf

 2 EXXX ′ − 
2EXXX ′ 2EXXX ′   Ie

2 −12EXXX ′ 

 2 EXXX ′ − 
2EXXX ′ 

EX
−1XX ′
2

I  e
2

2
EXXX ′ 

−1

2 EXXX ′

 I − I  e
2

2
EXXX ′

−1

2EXXX ′ .

Under multivariate normality

Proper assessment of posterior uncertainty requires knowledge 
of the genotypic distribution

X ind,marker 

x11 . x1p

x21 . x2p

. . .

xn1 . xnp

XX′ 

x11 . x1p

x21 . x2p

. . .

xn1 . xnp

x11 x21 . xn1

. . . .

x1p x2p . xnp



∑
j1

p

x1j

2 ∑
j1

p

x1j x2 j ∑
j1

p

x1jx nj

∑
j1

p

x2j

2

.

∑
j1

p

xnj
2
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E ∑
j1

p

x ij
2 ∑

j1

p

Varx ij ∑
j1

p

E2x ij 

∑
j1

p

2pjqj ∑
j1

p

pj − qj 
2

∑
j1

p

1 − 2pjqj  p −∑
j1

p

2pjqj

E ∑
j1

p

x 1 jx 2 j ∑
j1

p

Covx 1 j x 2j  ∑
j1

p

Ex 1 j Ex 2 j 

∑
j1

p

2 ijpjqj ∑
j1

p

pj − qj 
2

∑
j1

p

pj
2  qj

2 − 2pjqj1 − 

Covx 1j x 2 j   pj
2  qj

2 − 2pjqj1 −  − pj − qj 
2

 2pq

Under HW

-How to obtain sensible estimates? Is XX’ a good estimate of E(XX’)?
-Should we assume HW and use estimates of allelic frequencies and

of φ (i,j) as if there were no selection, etc.?

Future record:

uno

dos

tres

f ∗  X∗  e∗

Ef ∗ |f  Ef ∗   CovX∗,X ′Var−1ff

Ef ∗ |y  Ef||yEf ∗ |f,y  Ef||yEf ∗ |f

 Ef||yCovX∗,X ′Var−1ff 

CovX∗,X ′  CovEX∗,X ′|X∗,X  ECovX∗,X ′|X∗,X

 2EX∗X ′

Ef ∗ |y  Ef||y 2EX∗X ′XX ′2  Ie
2−1f

 2EX∗X ′E XX ′2  Ie
2−1 

f

cuatro

cinco DOES ANYBODY KNOW HOW TO COMPUTE THE ABOVE?
(CALCULATING THE PEV IS EVEN MORE INVOLVED)
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Reliability: standard formulae

reliability  1 − PEV
Varu

unreliability  1 − reliability  PEV
Varu

Varu  E
uVaru|u  VaruEu|u

E
uVaru|u ≤ Varu

Under MULVN  E
uVaru|u  Varu|u

IN SOME NON-GAUSSIAN MODELS, POSTERIOR VARIANCE CAN BE SOMETIMES LARGER THAN PRIOR 
VARIANCE, LEADING TO NEGATIVE RELIABILITY , AND POSITIVE UNRELIABILITY. 

POINT 3: WHAT WE CALL “RELIABILITY” IS VERY MUCH TAILORED FOR NORMAL DISTRIBUTIONS
AND LINEAR MODELS

PEV  Varu − u  VaruE
u − u|u  E

uVaru − u|u

 E
uVaru − u|u

 E
uVaru|u

p|y  ∑ p|y, MpM|y

 ∑ p|y, MpM|ydM

Var|y  EMVar|y,M  VarEM|y,M

TAKING MODEL UNCERTAINTY INTO ACCOUNT BY MODEL AVERAGING

THE PUNCH LINE: VARIANCE OF PREDICTION ERRORS TAKING MODEL
UNCERTAINTY INTO ACCOUNT

Average PEV Variance among predictions
from different models

IS MY MODEL “RIGHT”?
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CROSS-VALIDATION
(take model uncertainty into account:

never did this in the BLUP era)

A. Prediction and goodness of fit are 
different ball games: a model that fits well to 
training data may have atrocious predictive 
ability

B. Any cross-validation scheme (e.g., k-
folds) has a cross-validation distribution

THIS IS THE DISTRIBUTION THAT MATTERS AND NOT
A MODEL DERIVED QUANTITY, THAT IGNORES
UNCERTAINTY ABOUT THE MODEL!!!!!!

GOODNESS OF FIT (TRAINING= TRN) vs. PREDICTIVE ABILITY (TESTING= TST)

HUMAN STATURE: MAKOWSKY et al. , Plos Genetics 2011
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REASONABLE BAYESIAN MODEL

• For any parameter, must be able to “kill” the 
prior asymptotically

• For any parameter, statistical distance between 
prior and posterior (and therefore conditional 
posterior) must go to infinity

• If this distance has a finite upper bound, it 
means that the prior is influential

• Must be able to reduce statistical entropy as 
conveyed by the prior by a sizable amount. If the 
reduction is tiny prior very influential

CROSS-VALIDATION UNCERTAINTY
(Erbe et al. 2010)
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THE CURSE OF THE BAYESIAN 
ALPHABET

Featuring

Halle Berry,
as “A”

Kim-Jong Il,
as “Bayes”

Scarlett Johansson
as “B”

AND…

Sarah Palin
sings

“To Russia with 
love, a view from 

my igloo”

RECALL FROM EARLY 
PART OF COURSE
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STATE OF KNOWLEDGE
(in a finite sample)

Minimum Prior

Maximum Conditional posterior

Intermediate Marginal posterior

THE PROCESS OF 
DECONDITIONING CONSUMES 

INFORMATION ABOUT THE 
FOCAL POINT

Meaning: conditional posterior is 
the best world to live in
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BAYES A + BAYES B

(as I understand them)

y  1  Xb  e,

y|, X, b  N1  Xb, Ie
2 

Linear model proposed by Meuwissen et al. (2001)

Additive
effect of
SNP j

Code for genotype
of SNP j:
x= -1,0,1

SCALAR

MATRIX

yi   ∑
j1

p

xijbj  ei,

i  1, 2, . . . ,n; n  p

yi|,xi,b,e
2  N  ∑

j1

p

xijb j,e
2
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  uniform

e
2  eSe

2e
−2

bj  N 0,bj

2 ; j  1,2, . . . ,p

bj

2  S2
−2 for all j

The priors

Hyper-parameters, specified arbitrarily

bj | j
2  N 0, j

2

j
2|,S2  S2

−2

BAYES A (Meuwissen et al., 2001)

j=1,2,…,p

pbj |,S2   
0



N 0, j
2 pS2

−2d j
2


0



 j
2 − 1

2 exp −
bj

2

j
2

j
2 − 2

2 exp − S2

j
2

dj
2

 
0



j
2 − 12

2 exp −
bj

2  S2

 j
2

dj
2

 Γ 1  
2 bj

2  S2 − 1
2

 1 
bj

2

S2

− 1
2

 t0,,S2

Marginal prior

The prior of a marker
effect is a t-distribution
with known scale and df

Note: each SNP has a variance
(think of a sire model in which
each sire effect has a variance)

These hyper-parameters
will control the extent
of shrinkage. Question:
does their influence vanish
asymptotically?

MARGINALLY: IN BAYES A ALL MARKERS HAVE THE SAME VARIANCE
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Bayes B is Bayesianly “STRANGE”

Bayes B

1. Meuwissen takes the constant =  0

bj |j
2 

point mass at some constant k if j
2  0

N 0,j
2 if  j

2  0

j
2| 

0 with probability 

S2
−2 with probability 1 − 

2. Meuwissen assumes π is known, e.g., 0.95

3. Recall: if a prior variance
is 0, this means complete
certainty

p bj, j
2| 

bj  k and j
2  0 with probability 

N 0,j
2 pS2

−2  with probability 1 − 

Joint density:

pbj | 

bj  k with probability 


0



N 0,j
2 pS2

−2 dj
2 with probability 1 − 

Marginal prior
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
0



j
2 − 1

2 exp −
bj

2

j
2

j
2 − 2

2 exp − S2

j
2

dj
2

 
0



j
2 − 12

2 exp −
bj

2  S2

 j
2

dj
2

 Γ 1  
2

bj
2  S2 − 1

2

 1 
bj

2

S2

− 1
2

 t0,,S2

Further

pbj | 
bj  k with probability 

t0,,S2  with probability 1 − 

Then:
PRIOR = MIXTURE OF A POINT MASS AND OF A t-DISTRIBUTION. BAYES B PUTS
THE MASS AT 0 (IF NOT 0, THIS GETS ABSORBED INTO THE GENERAL MEAN)

MARGINALLY: ALL MARKERS HAVE THE SAME DISTRIBUTION

Mean and variance of a mixture (e.g., Gianola et al. 2006, Genetics)
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Ebj|  k  1 − 0  k

 0 if k  0

In Bayes B:

Varbj |    0  1 −  S2
 − 2

 k 2  1 − 02 − k2

 1 −  S2
 − 2

 k 21 − 

 1 −  S2
 − 2

if k  0

ALL MARKERS HAVE THE SAME VARIANCE IN BAYES B!

BAYES A IS A SPECIAL 
CASE OF BAYES B (π=0)

Meaning: if Bayes A has a flaw, 
this carries to Bayes B
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A Gibbs sampler for Bayes A

(element-wise sampling)
Note: the form of the implementation it 

is just an algorithmic matter: it is 
immaterial with respect to the issues

Sampling the mean

Flat prior for the mean (or for the fixed effects) is not influential

|ELSE  N 1
n ∑

i1

n

yi −∑
j1

p

xijbj , e
2

n
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Sampling the residual variance

e
2|ELSE  n1  e

n 

∑
i1

n

yi−−∑
j1

p

x ijbj

2

eSe
2

ne
en
−2

The prior can be “killed” simply by increasing sample size

Goes to n

This will dominate the weighted average
as n increases

bj |ELSE  N

∑
i1

n

xij yi −  −∑
j ′1

p

x ijbj

∑
i1

n

xij
2  e

2

bj
2

, e
2

∑
i1

n

x ij
2  e

2

bj
2

j  1, 2, . . . ,p

Sampling the marker effects

Kill the prior simply by increasing sample size. The effect of the shrinkage ratio vanishes

∑
i1

n

xij
2  e

2

bj
2
→∑

i1

n

x ij
2
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Sampling the variance of the marker effects

•Prior cannot be killed here. One can increase the number of data or of 
markers ad nauseum and gain only one degree of freedom, always
•Recall that, in the conditional posterior,
• all other parameters are known (i.e., they are assigned values)
•Since one must de-condition, actually the true posterior moves less than
one degree of freedom away from the prior

Prior df: very influential

Typically very small
bj

2 |ELSE   1  1


bj
2  S2

1   1
−2

  1  1
 S2

bj

S

2
 

1   1
−2

j  1,2, . . . ,p

STATE OF KNOWLEDGE

Minimum Prior
Maximum Conditional posterior
Intermediate Marginal posterior
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For df>6, the relative variability of the posterior distribution of the variance of
a SNP effect is essentially COPYING that of their prior distribution

ENTROPY CALCULATIONS

Hak
2 |,S2

 − logpak
2 |,S2 pak

2 |,S2 dak
2

 − 
2
− log S2

2
Γ 

2
 1  

2
d

d 
2

logΓ 
2

.  

Prior entropy

Entropy of the conditional posterior

Hak
2 |ELSE 

 − logpak
2 |ELSEpak

2 |ELSEdak
2

 −   1
2

− log
S2  ak

2

2
Γ   1

2
 1    1

2
d

d 1
2

logΓ   1
2

.  

Learning from data: reduces entropy
(cannot calculate entropy of posterior)

Variance of marker effect
(sorry, change of notation)
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Relative information gain

RIG 
H ak

2 |,S2 −H ak
2 |ELSE

H ak
2 |,S2

For ak  0, S  1 and   4, RIG  0. 125

For ak  0, S  1 and   10, RIG  6. 51  10−2

For ak  0, S  1 and   100, RIG  9.60  10−3

Metaphorically: the prior is totalitarian in Bayes A (B)

STATISTICAL DISTANCE BETWEEN CONDITIONAL POSTERIOR AND PRIOR
(KULLBACK-LEIBLER)

IF KL IS LARGE, THEN  LEARNING BEYOND THE PRIOR HAS    
TAKEN PLACE. 
KL SHOULD GO TO INFINITY AS DATA ACCUMULATE IN ANY 

REASONABLE BAYESIAN MODEL

Specific distance at a given variance

prior
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KULLBACK-LEIBLER DISTANCES
BETWEEN CONDITIONAL 
POSTERIOR AND PRIOR

2) 2. 64  10−2 for   10,S  1,p  1 and ak  0

3 2. 52  10−3 for   100,S  1,p  1 and ak  0

1) 7. 33  10−2 for   4,S  1,p  1 and ak  0

If 10 markers are allowed to share the same variance, KL= 4.47
Relative to (1), KL distance increases 61 times…

Effect of the scale parameter of the prior
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Prior (open boxes)

BAYES A (B)

• The prior always matters
• The effect of the prior is via the extent of 

shrinkage of marker effects
• The extent of shrinkage can be 

manipulated, with the data essentially 
providing no control

• Statistically greedy models (same will 
apply for any model assigning marker-
specific variances)
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SIMULATION

(never take a simulation too seriously)

RESURRECTION OF BAYES 
A

(If additive model holds, it may give 
sensible inferences about marker effects)
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POSTERIOR DISTRIBUTION OF SNP VARIANCES UNDER UNIFORM PRIOR
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POSTERIOR DISTRIBUTION OF SNP VARIANCES UNDER FOUR S.INV. CHI-SQUARE PRIORS

THE GOOD NEWS

Posterior distribution of SNP effects
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Bayes A “picks Up the 3 relevant SNPs

DEATH-RESURRECTION-DEATH

Bayes A may give a distorted 
picture if there is non-linearity or 

non-additivity
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NONE OF THE RELEVANT GENETIC SIGNALS ARE CAPTURED
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BAYES A vs. BAYES L

(Bayes L= Bayesian Lasso)

  



p

j

jep
1 2

1 β

In the Bayesian Lasso, marker effects are assigned double exponential distributions

-4 -2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5



D
e

n
si

ty

Density of a Normal and of a Double-Exponential Distribution

EACH MARKER HAS THE SAME D.E DISTRIBUTION
NO HETEROGENEOUS VARIANCE EITHER
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                     2
1

2
1

2
1 pp                     2

1 ,| βyp    

 
     .            . 

 p        .              .                2p  
     .            .  
 

                     222
ppp pp          2,| βnyp  

                 Sdfpp ,22
1 11

            2
1 ,| βyp     

 
  .       . 

    .          .              2p  
  .       .  
 

                 Sdfpp
ppp ,22                   2,| βnyp  

Bayesian LASSO

Bayes A

Graphical Representation of the hierarchical structure of the Bayesian LASSO  
and Bayes A  

p ei
2 | 

2

2
 2

2
exp −

2ei
2

2

pyi| i,  
0



Nyi | i,ei
2  

2

2
exp −

2ei
2

2
de

2

 2

2 2

0



ei
2 −

1
2 exp − 1

2
y i − i2

ei
2

 2ei
2 dei

2 ; i  1, 2, . . . ,n.

 

 

2|a,b  Gammaa,b

Assume exponential distribution of variances

Mix (as in t-model)

Assume
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Var ei
2 |ELSE 

E3 ei
2 |ELSE

2


2

yi−xi
′−z i

′u 2

3
2

2

E ei
2 |ELSE  2

yi−xi
′−zi

′u2

Implementation is as in a t-model but transform ei
2  1

ei
2

pei
2 |ELSE  ei

2 −
3
2 exp − 2

2ei
2 2

yi−x i
′−z i

′u 2

ei
2 − 2

yi−x i
′−zi

′u2

2

Inverse Gaussian (Wald) distribution

ANOTHER SIMULATION

(never take simulation too seriously, 

although it is great for checking ideas 
and code)

DE LOS CAMPOS ET AL. (2009)
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.300,...,1         
280

1

 


ixy
j

ijiji 

280 markers. Residuals assumed N(0,1)

Pearson’s correlation between marker genotypes
(average across markersand 100 Monte-Carlo simulations)
by scenario (X0: low LD; X1 high LD).

Adjacency between markers

Scenario 1 2 3 4

X0 0.007 0.002 -0.002 0.013

X1 0.722 0.567 0.450 0.356

Only 10 markers had effects 270 had no effect on the trait simulated

Positions (chromosome and marker number) and effects of markers 
(there were 280 markers, with 270 with no effect)
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NINE SPECIFICATIONS OF 
BAYES A

Prior df      Prior Scale

10-5 10-3 5x10-2

0 (1) (2) (3)

½ (4) (5) (6)

1 (7) (8) (9)

PRIORS 1, 2, 3  ARE IMPROPER
PRIORS 7, 8, 9 WOULD LEAD TO CAUCHY PRIOR DISTRIBUTION OF 

MARKER EFFECTS IF SCALE WERE 1
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Ability to uncover relevant genomic 
regions

•For each method and replicate, markers ranked on absolute values of posterior means
•For each effect, dummy variable created
•Dummy was 1 if marker (or any of its 4 flanking markers) ranked on top 20. O.W= 0
•Average over markers and replicates Index of “retrieved regions”

Bayes A affected by priors:
Worse performance in Settings 1, 4 and 7
Bayes A (settings 2, 3 , 6) and Lasso almost doubled ability
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Simple fixes of Bayes A

• Assign the same variance to
all markers (trivial Bayesian regression 
problem)

• Assign the same variance to groups of 
markers (e.g., chromosomes or genomic 
regions): model comparison issue

• Assign non-informative priors to S and to 
the degrees of freedom ν
 can be done. Just an algorithmic matter

Issues and questions

• Bayes A can be “fixed”, but may not the best 
thing to do. Open question…

• Bayes A, as is, may still have a good predictive 
(out of sample) behavior, even though it is not 
completely defensible

• Bayes B is Bayesianly ill-posed. If you do not 
believe me, check with local Bayesian 
statisticians…

• More reasonable: mixture at the level of the 
effects (not of the variances): I believe this is 
what the Dutch did (and Iowa people with beef 
cattle, mainly Fernando and Garrick)


