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Purpose and Overview

We will use PRRS virus infections in pigs as a case study to discover the 
strengths & weaknesses, and synergy of empirical vs mechanistic models 

1. Empirical modelling approach 
• Provide a mathematical description of virus load profile characteristics

2. Mechanistic modelling approach
• Determine underlying mechanisms for PRRS virus load profiles

We use similar mathematical modelling tools as for epidemic models 
(universal language of mathematics), but different biological understanding 
(immunology vs. epidemiology)



Recap from Lecture 1: 
Empirical vs mechanistic models

Empirical  Models (also called Statistical Models): 
• Data driven modelling approach
• Starting point: data obtained from empirical studies
• Aim:  to determine patterns & relationships between data (model variables)
• Require no prior knowledge of the underlying biology

Mechanistic Models (also called Process Based Models):
• Hypothesis driven modelling approach
• Starting point: specific phenomena of interest – observed from data
• Aim: to provide understanding for underlying mechanisms of this 

phenomenon
• Require prior understanding of system 
• Data are used to parameterise / validate the model

We will use both types of 
approaches to model 
PRRS virus infections



PRRS viraemia profiles

PRRS Host Genetics Consortium PRRSV 

challenge experiment on growing pigs:

• ~1500 immunologically naïve piglets 

experimentally infected with same strain 

/ dose of a virulent strain of PRRSV

• Repeated measurements of virus load in 

serum from rtPCR at 0, 4, 7, 11, 14, 21, 

28, 35 & 42 days post infection



Steps of the empirical (statistical) modelling approach

1. Examine the viraemia data and find a mathematical function 

that describes the full range of virus load profiles

2. Explore the function

3. Fit the function to the data (see inference lectures)

4. Use the function to gain new insights into infection 

characteristics



1. Examining PRRS viraemia profiles

1. Is there one mathematical function that describes each of the observed profiles?

2. Can we distinguish systematic patterns from biological noise?

3. What is the relationship between early and late response?

Huge variation in virus load trends:
• At a given point in time, virus loads can differ 

by 4-5 log differences
• Some clear the infection within 3-4 weeks
• Others have still high virus load after 6 weeks
• Some have a second phase of virus load 

increase



Visual inspection indicates 3 response types:

• There appear to be three types of virus load profiles:

Clearance, Persistence, Rebound

• Are these genuine or is rebound more likely the artefact 
of a measurement error?



Examining individual viraemia profiles

1. Characteristics of individual (uni-modal) profiles
• Steep increase in virus load towards peak 

viraemia ~7-14 days post infection
• Gradual viraemia decline, often sigmoidal shape



Candidate Model: The Woods function
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2. Exploring the Woods function

• The Woods function is given by the equation

• It produces uni-modal viraemia profiles

• The profile is completely specified by 3 parameters (a1, b1, c1)  that are easy 

to interpret (see tutorial)

• Estimates for parameter values and goodness of fit are obtained via 

statistical  inference (see tutorial)

𝑉 𝑡 = 𝑎1𝑡
𝑏1𝑒−𝑐1𝑡



Modelling rebound
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Extended Woods model
P

re
d
ic

ti
o
n
 [

R
T

-P
C

R
 l
o

g
1

0
]

Time [Days Post Infection]

Second curve

𝑉 𝑡 = 𝑎1 𝑡
𝑏1𝑒−𝑐1𝑡 +max(0, 𝑎2 𝑡 − 𝑡0

𝑏2𝑒−𝑐2 𝑡−𝑡0 )

The extended Woods function overlays 2 

Woods functions

1. The unimodal Woods function  

for 𝑡 ≤ 𝑡0
2. A shifted Woods function with origin at 𝑡0

for 𝑡 ≥ 𝑡0

(note that  𝑎1𝑡
𝑏1𝑒−𝑐1𝑡 ≈ 0 for 𝑡 ≥ 20 days)

𝑉1 𝑡 = 𝑎1𝑡
𝑏1𝑒−𝑐1𝑡

𝑉2 𝑡 = 𝑎2(𝑡 − 𝑡0)
𝑏2𝑒−𝑐2 𝑡−𝑡0

t0



Benefits of fitting functions to data

1. Removes noise from the data

2. Provides estimates (new phenotypes) for

• Viraemia levels at any time point post infection: evaluate V(t)

• Time of peak virus load: obtained by setting  
𝑑𝑉

𝑑𝑡
= 0

• Peak virus load: obtained by setting  
𝑑𝑉

𝑑𝑡
= 0

• Duration of infection: calculate T, when 𝑉(𝑇) < detection level 

• Severity of infection, described by cumulative virus load over the 

infection period: obtained by integrating ׬𝑡=0
𝑇

𝑉 𝑡 𝑑𝑡

• Rate of change in viraemia at any stage of infection, described by 

the local slopes: obtained by calculating the derivative 
𝑑𝑉

𝑑𝑡
at times ti

slope =-0.04

slope= -0.30

slope =-0.07



3. Fit the function to individual viraemia data profiles

Raw PRRS viremia data Predicted viremia (extended 
Woods model predictions) Islam et al., PLoS ONE 2012

• We use statistical inference (see Lecture & tutorial on Thursday) to fit the 
Woods models to the data 

• This provides for every pig estimates (with measure of certainty) of the 
function parameter values & a measure for goodness of fit



Steps of the empirical (statistical) modelling approach

1. Examine the viraemia data and find a mathematical function 
that describes the virus load profiles

2. Explore the function

3. Fit the function to the data (see inference lectures)

4. Use the function to gain new insights into infection 
characteristics



Is viraemia rebound a genuine phenomenon?

Approach: Fit both, the uni-modal and bi-modal Woods model to viraemia data of 
each individual pig to obtain a statistical classification of pigs into rebounders / 
non-rebounders based on goodness of model fit
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Islam et al., PLoS ONE 2012

Number of individuals 
assigned to each class:

Class 1: 
Non-Rebound

Class 2:
Rebound

683 (78%) 191(22%)

Statistical analysis implies that 
rebound is a genuine phenomenon 
rather than an artefact of the data



To what extent is the shape of the viraemia profile 
determined by the genetics of the pig?

• The model fitting process provides for every pig new descriptors for 
its viremia profile characteristics (e.g. uni-/bimodal, peak viraemia, …)

• These can be used as response variables in statistical models for 
estimating genetic effects
• See e.g. Hess et al. (GSE 2016); Quantitative genetic analysis revealed that 

viraemia rebound is not heritable, i.e. the pig’s genetic makeup does not 
determine whether or not it will experience viraemia rebound when infected 
with PRRSV

➢What other factors could determine whether rebound will happen?



Can we predict whether rebound will occur?

Process:
• Chop all data off at 21 days post infection
• Fit the Woods function to the truncated profile
• Compare the Woods function parameters between profiles 

from different viremia classes (e.g. ANOVA)
• Compare resulting mean profiles



Compare Woods parameter estimates

Woods parameter estimates derived from the primary phase (0-21dpi)

Group A1 
(se)

B1
(se)

C1
(se)

Non-Rebound 3.99
(0.034)

0.627
(0.009)

0.0903
(0.001)

Rebound 3.89 
(0.070)

0.676
(0.019)

0.0986
(0.003)

Significantly 
Different?

No
P=0.2146

Yes
P=0.0181

Yes
P=0.005

Estimates for parameters b1 and c1 are significantly different between 
rebounders and non-rebounders



Compare predicted viraemia profiles

• Average virus load profiles for pigs that clear the infection and experience 
rebound are very similar (impossible to distinguish within first 3 weeks)

• ‘Persistent’ profiles are however distinguishable

• We cannot exclude that ‘persistent’ pigs don’t experience rebound

Clearance
Persistence

Rebound
Mean Woods model predictions 
with 95% confidence intervals  for 
viraemia profiles of pigs from the 3 
different viraemia classes 
‘Clearance, Persistence, Rebound’



Combining empirical & mechanistic models:
The systems biology pipeline

Data
• Biological observations

• “noisy”

Empirical 
model

• Data driven

• Remove noise, retain & describe characteristic features

• New insights, e.g. about Rebound

Hypothesis

• Whether rebound occurs or not depends on 
the relative strength of different interacting 
immune processes

Mechanistic 
model

• Hypothesis driven

• Explore how different biological mechanisms interact 
over time & affect viraemia profiles



Recap: Recipe for building mechanistic models

1. Define phenomena of interest / formulate questions & hypotheses

2. Identify key biological processes to be included in a model
• Apply principle of Ockham’s razor: start simple & gradually build up complexity

3. Abstract them into a mathematical model
- Determine variables and parameters

- Determine mathematical equations

4. Analyse the model behaviour

5. Validate model with data (if available)



1. PRRS phenomena of interest

• What causes the observed diversity in PRRS viraemia profiles?

• Which biological processes are responsible for fast clearance or for 
viraemia rebound?



2. Identify key processes to be included in the model

Applying principle of Ockham’s razor:

Start with the simplest possible model with minimum number of components:  

• Model the infection process at the target site of infection, i.e. the lung

• Ignore flow of virus / cells between blood and organs

• Start with modelling the interactions between virus and target cells

• Target cells are a subset of alveolar macrophages

• Assume that the virus is a homogeneous entity 

• Gradually introduce immune response

• Ignore everything else



2. Identify key processes to be included in the model

Susceptible
target cell x

Production

Death



2. Identify key processes to be included in the model

Susceptible
target cell x

Infected
Cell y

Free virus v

InfectionApoptosis

Virus replication 

Production

Death

Decay



2. Identify key processes to be included in the model

Susceptible
target cell x

Infected
Cell y

Free virus v

Production 

Death

InfectionApoptosis

Virus replication 

Non-susceptible 
Target cell  z

Differentiation 

Death

Decay



3. Towards a mathematical formulation: define model 
variables and parameters

Susceptible
target cell x

Infected
Cell y

Free virus v

Production 

Death

InfectionApoptosis

Virus replication 

Non-susceptible 
Target cell  z

Differentiation 

Death

Decay

Rate α

Rate k

Rate βV

Rate ρ

Rate μ Rate μ

Rate δ Rate τ

• 4 Variables
• 7 Parameters 



3. Mathematical formulation

𝑑𝑍

𝑑𝑡
= 𝜏 − 𝛿𝑍 − 𝜇𝑍

𝑑𝑋

𝑑𝑡
= 𝛿𝑍 − 𝜇𝑋 − 𝛽𝑉𝑋

𝑑𝑌

𝑑𝑡
= 𝛽𝑉𝑋 − 𝛼𝑌

𝑑𝑉

𝑑𝑡
= 𝜀𝑌 − 𝜌𝑉

Model equations:

What assumptions are entailed in the model?
Can you see the similarity to the predator-prey model?



4. Analyse the ODE model

To analyse the model, it helps to distinguish between 3 phases:

1. Initial phase: prior to infection (𝑡 ≤ 0)

2. Acute phase: dynamic phase 0 < 𝑡 ≪ ∞

3. Long-term outcome: steady state (equilibrium) (𝑡 → ∞)



Initial state, prior to infection

Assumptions:

• No virus, no infected cells

• Uninfected cells are at equilibrium

𝑑𝑍

𝑑𝑡
= 𝜏 − 𝛿𝑍 − 𝜇𝑍

𝑑𝑋

𝑑𝑡
= 𝛿𝑍 − 𝜇𝑋 − 𝛽𝑉𝑋

𝑑𝑌

𝑑𝑡
= 𝛽𝑉𝑋 − 𝛼𝑌

𝑑𝑉

𝑑𝑡
= 𝑘𝑌 − 𝜌𝑉

𝑑𝑍

𝑑𝑡
= 0

𝑑𝑋

𝑑𝑡
= 0

𝑌 = 0

𝑉 = 0



Initial state, prior to infection

Assumptions:

• No virus, no infected cells

• Uninfected cells are at equilibrium

𝑑𝑍

𝑑𝑡
= 𝜏 − 𝛿𝑍 − 𝜇𝑍

𝑑𝑋

𝑑𝑡
= 𝛿𝑍 − 𝜇𝑋 − 𝛽𝑉𝑋

𝑑𝑌

𝑑𝑡
= 𝛽𝑉𝑋 − 𝛼𝑌

𝑑𝑉

𝑑𝑡
= 𝑘𝑌 − 𝜌𝑉

𝑑𝑍

𝑑𝑡
= 0

𝑑𝑋

𝑑𝑡
= 0

𝑌 = 0

𝑉 = 0

𝑍 =
𝜏

𝛿 + 𝜇

X =
𝜏𝛿

𝜇(𝛿 + 𝜇)

Solve 
equations 
to get: 



Steady state (𝒕 → ∞)

𝑑𝑍

𝑑𝑡
= 𝜏 − 𝛿𝑍 − 𝜇𝑍

𝑑𝑋

𝑑𝑡
= 𝛿𝑍 − 𝜇𝑋 − 𝛽𝑉𝑋

𝑑𝑌

𝑑𝑡
= 𝛽𝑉𝑋 − 𝛼𝑌

𝑑𝑉

𝑑𝑡
= 𝑘𝑌 − 𝜌𝑉

𝑑𝑍

𝑑𝑡
=
𝑑𝑋

𝑑𝑡
=
𝑑𝑌

𝑑𝑡
=
𝑑𝑉

𝑑𝑡
= 0

Steady state conditions: 

2 possible outcomes:
(a) Virus clearance – reversion to initial state

𝑍1 =
𝜏

𝛿 + 𝜇
𝑋1 =

𝛿𝜏

𝜇(𝛿 + 𝜇)

𝑌1 = 0 𝑉1 = 0

(b) Persistent infection:

𝑍2 =
𝜏

𝛿 + 𝜇 𝑋2 =
𝛼𝜌

𝛽𝜅

𝑌2 =
𝛿𝜏

(𝛿+𝜇)𝛼
-
𝜌𝜇

𝛽𝜅
𝑉2 =

𝜅𝛿𝜏

(𝛿+𝜇)𝛼𝜌
-
𝜇

𝛽

Which outcome will occur?



The answer lies in the basic reproductive ratio R0

• R0 = 1 is a threshold between productive / non-productive infection

• R0 > 1: Infection can invade

• R0 < 1: Infection will die out

Definition: Basic reproductive ratio R0

The average number of newly infected cells that arise from 
one infected cells when all other cells are non-infected



Calculating R0

1. An infected cell lives on average  
1

𝛼
seconds

2. An infected cell produces on average k free virus particles per 

second, each persisting for 
1

𝜌
seconds.

3. Each virus particle infects 𝛽𝑋 cells

4. Prior to infection:

Multiplying all 4 components  gives             𝑹𝟎 =
𝒌𝜷𝜹𝝉

𝜶𝝆𝝁(𝜹+𝝁)

X =
𝜏𝛿

𝜇(𝛿 + 𝜇)



Steady state (𝒕 → ∞)
Previously shown: There are 2 possible 
outcomes:
(a) Virus clearance

𝑍1 =
𝜏

𝛿 + 𝜇
𝑋1 =

𝛿𝜏

𝜇(𝛿 + 𝜇)

𝑌1 = 0 𝑉1 = 0

(b) Persistent infection:

𝑍2 =
𝜏

𝛿 + 𝜇 𝑋2 =
𝛼𝜌

𝛽𝜅

𝑌2 =
𝛿𝜏

(𝛿+𝜇)𝛼
-
𝜌𝜇

𝛽𝜅
𝑉2 =

𝜅𝛿𝜏

(𝛿+𝜇)𝛼𝜌
-
𝜇

𝛽

Which outcome will occur?

• One can show that 𝑅0 > 1 is equivalent to 
𝑉2 > 0

• In other words, the model predicts that if 
infection can invade, it will persist

➢ This model is clearly not an adequate 
representation of PRRS infection dynamics 



Acute phase dynamics

𝑑𝑍

𝑑𝑡
= 𝜏 − 𝛿𝑍 − 𝜇𝑍

𝑑𝑋

𝑑𝑡
= 𝛿𝑍 − 𝜇𝑋 − 𝛽𝑉𝑋

𝑑𝑌

𝑑𝑡
= 𝛽𝑉𝑋 − 𝛼𝑌

𝑑𝑉

𝑑𝑡
= 𝑘𝑌 − 𝜌𝑉

• We need to solve these equations to 
determine how values for the model 
variables Z, X, Y and V change over time t

• No analytical solutions can be derived 
• Requires computer program to obtain 

numerical solutions (see tutorial)

e.g. Z(0) = z0, X(0) = x0, Y(0)=0, V(0) = v0



Assessing the acute phase dynamics

Recap (Lecture 4) – adopted approach (see tutorial)

1. Choose arbitrary values for the model parameters

2. Define initial conditions  

3. Code the differential equations 

4. Call a numerical solver (e.g. ‘lsoda’ in R) to generate predictions 
for the model variables Z, X, Y and V at different time points

5. Plot & examine the corresponding profiles

6. Interpret the results

Z(0) = z0, X(0) = x0, Y(0)=0, V(0) = v0



Virus load profile generated by the model

• The model can generate virus load profiles of similar shape as those 
observed in the experimental data

What causes the virus load decline in the model?



Time profiles for cell numbers

• Reduction in virus load can only be 
achieved when the pool of  susceptible 
target cells (X) gets depleted.

• This can only occur if the total number 
of host cells (Z+X+Y) decreases

• Contradicts experimental findings
➢ The Model is clearly not an adequate 

representation of PRRS infection 
dynamics 

Susceptible (X)
Infected (Y)

Total (X+Z+Y)



Back to the drawing board

Susceptible
target cell x

Infected
Cell y

Free virus v

Production 

Death

InfectionApoptosis

Virus replication 

Non-susceptible 
Target cell  z

Differentiation 

Death

Decay

What could cause the 
decline in virus load in 

this model?



Increase model complexity: add immune response

Susceptible 

cells X

Infected

cells Y

Free virus V 

Production 

Death

Infection Apoptosis

Virus 

replication

Non-susceptible 

Cells Z

Differentiation 

Death

Decay

Cytotoxic T cells U

Lysis

Production Death

Neutralizing 

Antibodies W

Neutralization 

Production Decay



The host-pathogen interaction model with parameters

Production 

Susceptible 

cells X

Infected

cells Y

Free virus V Death

Infection Apoptosis

Virus 

replication

Non-susceptible 

Cells Z

Differentiation 

Death

Decay

Cytotoxic T cells U

Lysis

Production Death

Neutralizing 

Antibodies W

Neutralization 

Production Decay

α
k

βV

σ

μ μ
δ τ

ρ

θU

θW

εY
γV ω

The parameters ε & γ
represent the immuno-
competence of a host



Model equations and assumptions

Assume constant replenishment of target cells, 
so that  Z(t) + X(t) + Y(t) = constant M
Model equations: 

𝑑𝑋

𝑑𝑡
= 𝛿(𝑀 − 𝑋 − 𝑌) − 𝜇𝑋 − 𝛽𝑉𝑋

𝑑𝑌

𝑑𝑡
= 𝛽𝑉𝑋 − 𝛼𝑌 − 𝜃𝑈𝑌

𝑑𝑉

𝑑𝑡
= 𝑘𝑌 − 𝜌𝑉 − 𝜗𝑉𝑊

𝑑𝑈

𝑑𝑡
= 𝜖𝑌𝑈 − σ𝑈

𝑑𝑊

𝑑𝑡
= 𝛾𝑉𝑊 − 𝜔𝑊

The assumption of constant cell numbers 
allows reduction from 6 to 5 model variables

How does the model represent interactions 
between cells, virus and immune response?



Model predictions for the acute phase of infection: 
Infection profiles
• To investigate the role of each immune component, include one component at a time 

(by setting parameter values to zero)

• Assuming constant replenishment of susceptible cells produces the following profiles:

No immune response (IR)

T cells & antibodies

Only T cells

Only Antibodies

• Both types of adaptive responses drastically reduce the virus load
• Antibodies alone cannot clear the infection – T cells are crucial for clearing infection



Model predictions for the acute phase of infection: Interactions 
between cellular and humoral immune response
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No immune response (IR)

T cells & antibodies

Only T cells

Only Antibodies

• Both types of immune responses compete with each other

• We can show that the relative strength of immune responses determines the 

outcome of infection



5 possible long-term outcomes (equilibria)

• By setting all differential equations to zero we can get expressions for the 
variables Z, X, Y, V, U & W at the equilibrium

• These represent 5 possible outcomes:
1. Infection & Immune response clear (E1)

virus load (V) = 0, nr. Infected cells (Y) = 0, Nr. nABs (W)  = 0, nr. T-cells (U) = 0

2. Persistent infection, virus outcompetes immune response (E2)
V > 0, Y > 0, W = U = 0

3.    Persistent infection, T-cell response dominates (E3)
V > 0, Y > 0, W = 0, U >0 

4.   Persistent infection, nAB response dominates (E4)
V > 0, Y > 0, W >0,  U = 0

5.   Persistent infection, both types of immune responses prevail  (E5)

V > 0, Y > 0, W >0,  U > 0



The outcome depends on the relative strengths of both 
arms of immunity

The regions corresponding to 
the different outcomes were 
obtained by stability analysis
(not shown in this course)

Doeschl-Wilson and Galina-Pantoja (2010)



The outcome depends on the relative strengths of both 
arms of immunity

• Slight differences in individuals’ 
immuno-competence can lead to 
different infection outcomes

➢ Possible explanation for large 
variation in PRRS infection profiles?

• One can show mathematically that 
the system always converges to the 
outcome corresponding to 
minimum virus load

➢ Is the (real) immune system 
optimised for minimising virus load?

Doeschl-Wilson and Galina-Pantoja (2010)



Model application: How important are T-cells for viral 
clearance?

• There are conflicting opinions about how 
important T-cells are for virus clearance

• Experimental findings report poor correlation 
between virus load and T cell response

• Does this imply  that T-cells don’t play a crucial 
role?

IF
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Virus / g tissue

P=0.500

R2 = 0.005



Model application: How important are T-cells for viral 
clearance?

The model suggests that virus load 
is good indicator for host ability to 
launch a T-cell response

Production rate of cellular response (T-cells) ε

Model prediction

V
ir

u
s 

lo
ad

 V



Model application: How important are T-cells for viral 
clearance?

• However, the relationship between 
the host ability to launch T-cell 
response and the actual T-cell 
response is non-linear 

• Relationship is only apparent if full 
range of values is expressed

No correlation 

between responsiveness

and response

Production rate of cellular response (T-cells) ε
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Model prediction



Model application: How important are T-cells for viral 
clearance?

No correlation 

between virus load

and immune response

• Also, the relationship between 
virus load and T-cell response is 
non-linear and not apparent unless 
the full range of values is observed

➢ An observed weak correlation 
between virus load and immune 
response does not necessarily 
imply an inefficient immune 
response!
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Model prediction



From a toy model towards a more realistic process based 
model of within host PRRS infection dynamics 

• The simple host-pathogen interaction model provides an extremely crude & 
generic representation of the immune response

• It cannot produce virus load profiles that are a good match (in shape and scale) to 
the experimental data



A more realistic process based model of PRRSV infection 
dynamics

Go et al., PLoS ONE 2014

• The model synthesizes 
existing literature findings 
on immune response to 
PRRSV infection

APC = antigen presenting cell
(n=naïve, m = mature, i = infected)

NK = natural killer cell
Tc = cytotoxic T cells
Treg = regulatory T cells
Th = T helper cells
B = B-cell
NAb = neutralizing antibody

Model of within host dynamics in the lung



Model equations (example)



Model inputs and outputs:

Pig α δ ω Φ

1 0.001 0.349 0.002 0.987

2 0..02 0.567 0.001 0/890

3 0.0004 0.345 0.002 0.987

4 0.0034 0.012 0.004 0.999

5 0.0023 0.675 0.007 0/.99



Modelling steps

1. Exploratory analysis
• what types of viremia and immune response profiles can the model 

generate?

2. Fit model to experimental viremia data
• Refine the data / specify criteria
• Can the model reproduce the observed viremia profiles?

3. Identification of candidate mechanisms for rebound
• Compare parameter estimates and immune response characteristics 

associated with either rebounders on non-rebounders

4. Validate candidate mechanisms 
• Perform an in-silico knock-out experiment



Exploratory analysis: Can this model reproduce the wide 
range of observed viraemia profiles?

Fitting the process based 
ODE model to the data 
(smoothed by extended 
Woods function!) shows that 
the process based model is 
able to reproduce the full 
range of observed virus load 
profiles



Model fitting – data selection

Woods viremia profiles from the PHGC nursery pigs

Avoid confounding by
select subset of viremia 
profiles:
• Non-rebounders 

have cleared the 
virus from blood by 
day 35

• Rebounders and non-
rebounders have 
similar characteristics 
within first 3 weeks 
post infection



Model fitting – defining goodness of fit 

All profiles within 
the grey data  
envelope are 
considered as 
acceptable

Parameter estimates obtained by an Adaptive Random Search 
algorithm applied to 625 randomly chosen initial parameter sets



Can this model help to determine which mechanisms are 
responsible for viremia rebound?

Stronger immune 
response activation 

Faster depletion of 
target cells

Predominant 
orientation 
towards antiviral 
response

Lower CTL & nAB
response

But which of these are causative?

Non-rebound
Rebound

Rebounders are 
characterised by:



Validation of candidate mechanisms for rebound

Simulated knock-out experiments:
• Can we prevent rebound by altering a specific mechanism? 
• Can we trigger rebound by modulating the mechanism in the opposite direction? 

• Boosting cytolysis or virus 
neutralization prevents 
rebound

• Weak virus neutralization 
alone does not cause rebound

ApoptosisInfection NK 
cytolysis

NeutralizationLc
cytolysis



Can we believe the model results?

• Modelling challenge: Many parameter combinations produce similar virus load profiles 
• This phenomenon is known as Identifiability problem
• Identifiability analysis: group of statistical methods for estimating how well model 

parameters are determined by the amount and quality of experimental data

• But could this ambiguity in parameter estimates also reflect the real situation? 
• Many possible infection routes may lead to the same outcome
• This may explain the apparent ambiguity in experimental results

• Only experimental validation can tell!



Summary

• Different types of mathematical models answer different types of 
questions

• Empirical & mechanistic models can be complementary

• Even very simple models can generate valuable insights

• There is a wealth of analytical tools available to rigorously examine 
differential equation models

• There is a trade-off between making the model sufficiently simple to 
gain relevant insights and sufficiently complex to be realistic

• Take home message: Start simple and gradually build up complexity
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