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Simple Linear Regression
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Least Squares Estimation

* How to find ‘good’ estimates of the model
parameters pg and p;?

* Least squares solution: estimators that minimize
the Residual Sum of Squares (RSS):
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Least Squares Estimation
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- Unbiased estimators, i.e. E[p,]=P, and E[B,1=B,

- In addition, as E[RSS]=§E[yi—(|§0+[§]xi)]2=(n—2)02

i=1
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an unbiased estimator of 02 is: s° = Ez(ei)z




Example

Data: Information on phenotypes and genotypes
for a QTL affecting a specific quantitative trait.

QTL Phenotype
Genotype | (8 individuals per group)
95.9,108.0, 96.5, 929

cc 1010, 945, 937, 89.8
o 101.2, 103.9, 85.9, 109.4
105.7, 98.4, 841, 103.1
1171 952 1064, 104,
- 71 952 106.4,104.7

925, 1239, 97.8,100.5

Suppose that two alleles segregate in co-dominance in this
locus; infer the phenotypic mean of the heterozygous
individuals, as well as the gene effect (allele substitution)
and the residual variance (environment + polygenes).

. linear re
(22 ’ Example

y;: phenotype of individual i
y, =B, +B,X, +¢, x;: QTL genotype of individual i
i=1,2,.. 24 (index for individual)

o po: expected phenotypic value of heterozygous
Parameterization p;: allelic substitution effect

choice: x;=-1,0and 1 for QTL = CC, CT and TT
24 n ) N
in =0.0 > x> =16.0 S. =160 B, =100.09
24 24 E> E> B] =411
S,, =658
y, =2402.1 y.X; =65.8 X ~y
2 2 6’ =7545




Maximum Likelihood

YisYpse- ¥, ~P(y;10,,0,,...,0,)

Likelihood ind 1
Function: LBV =p(y10)=] [p(y,16,.6,.....8,)

i=1

Log-Likelihood z
Function: 1(01y)=logL(81y)= ¥ logp(y, 16)

i=l1

6=MLE®) = L@®ly)=L@®ly), any 6EO
/

/

parameter space

Maximum Likelihood

Finding the maximum of L(O1y):

%L(B ly)=0 (solutions are possible candidates)

1

0’ :
WL(OIy) 6.6, <0 (maximum)

Check also the boundaries
of the parameter spacell
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Example 1:  Yi-Yow--¥, ~Bin(n,.p)

L(ply)= 1_[1:’1‘(yi I p) pEy‘ (= p)z(";-yi)

I(ply) = Yy logp+3Y(n;-y,)log(l-p)
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Example 2: ¥1:¥se-¥, ~NU.0%)

Lo’ 1y) =] [p(y; lm,0%) = (0*) " exp
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Example 3: | 7" SN 9 POO
Yio W, po,o, O
012
p =
1 5o

P(YisYi 19) = ——F—
v 270,0,4/1-p’

expi - 1 . (¥i _“‘1)2 + (i _Mz)z - (Y =)y —w,y)
2(1-p7)

2 2 p
O, O, 0,0,

ﬁ‘j = %ZYU

p= =
R = . A2 Y
0?=—E(yij—uj)2 \/E(yil ) E(Yiz u,)
n< Pt il
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Hypothesis Testing

= Likelihood Ratio Test (LRT)
iid
YisYase- Yo ~P(Y; 16)

L®1y)=py 1) =] [p(y, 1)

Suppose: H,:0€0, vs. H :0€£0,
Restricted (6,)
maximization

max L(0] y)

LRT = max L(6| y) Unrestricted
0<LRT=1 o maximization




Hypothesis Testing

/ So 6, represents a
Let: H,:0=6, vs. H, :0=0, unique value ()

[ LrT=L% V) ]
LGy

Critical Region: LRT < ¢

How to choose the cutoff value ¢ ?

Hypothesis Testing

Accept H, Reject Hy

. Type I Error
Ho is true 1-a a (Significance Level)
H, is false B 1-p8
Power

Type II Error

= Standard approach:
@ Specify an acceptable type I error rate (o)

@ Seek tests that minimize the type IT error rate (f),
i.e., maximize power (1 - p)




Type I and Type II Errors

You're not
pregnant.

You're
pregnant!

Hypothesis Testing

= Log-Likelihood Ratio Test

[ logLRT =-2 log[%] ]
y

L(©,ly) >
Dlog| =0 | o
Og[ L(Oly)l ¢

\

¢ degrees of freedom

Difference in dimension of
the spaces




The Randomization test

®» The basic idea is attractively simple and
free of mathematical assumptions

Experiment
Trt 1 ™2 | From distribution F
Suppose: v o
"\_+772 \ |~ From distribution 6
Y12 Y2
' . H,: F=G vs. H,: F=G
Yin1 Yon2
Y £ S, YoxS,

The Randomization test
(D Define the statistics (e.g. t=%17%2 ) and calculate its
se
value for the data set (call it t*)
@ Combine the n; + n, observations

@ Take a sample of size n; without replacement
(to represent the Group C)

(D The remaining n, observations constitute the Group T

@ Compute the value of t (call it 1;) and repeat the
process a large number (B) of times

@ P'VGIUC: p =3 I(f(l)Z T*)/B




The Randomization test

Experiment Permutation 1 Permutation 2 Permutation B
Trt 1 Trt 2 1 T2’ T’ T2’ 1 T2’

Vi1 Va1 Y2 Yim Y21 Yo7 Yim Y13

[> Va5 Va3 Y Yim Yia Y22

Y12 Y22 : X . :
: ; Yon2 Y1 Y12 Yan2 Y21 Yon2
Yin1 Yon2 Y12S; | Vo£S, Y12S; | ¥o£S, Y12S; | V=8,
Yt S, Yo%,
ty) <tp < .. <tg
t* YI - YZ
S€

P-value: p = = I(t,= t*)/B

Linear Models

Guilherme J. M. Rosa

University of Wisconsin-Madison
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General Linear Model
(Fixed Effects Model)

X[3+8

responses / \ residuals

design/incidence overall mean + fixed
matrix (known) effects parameters

iid

e~N(0,1 0°) — & ~N(0,0°)

= Fixed effect: levels included in the study represent all
levels about which inference is to be made. Fixed
effects models: models containing only fixed effects

Example 1

Experiment to compare growth performance of pigs
under two experimental groups (Control and Treatment),
with three replications each.

Model:
Control | Treatment yiy=u+ 0; + i
53 61 B
46 66 Yij: weight gain of pig j of
58 57 group |

< W constant; general mean

d;: effect of group i

(_eij residual term

11



Matrix Notation

Control | Treatment
53 61
46 66
58 57
(v, 1 531 1 1 0]
v,| [46] |1 1 0
vl 158] [1 1 0 g
v | |61 [1 0 1 61
V| |66] |1 0 1|t7
yu| [57] [1 0 1

Alternative Parameterizations

= Equivalent models with
different parameterizations

For example, if the average
weight gain in each group is
expressed as u; = u + §;, the
model becomes:

Alternatively, the model can be
expressed in terms of the
average weight gain of the
Control (u;) and the difference
on weight gain between the

two groups (t = u, - w):

53"

57

46
58
61
66

46
58
61
66

'537

57

T 1
— e e e e

==

e e e = = T >}

— = = OO O

Wi
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Example 2

Flowering time (days, log scale)

of Brassica napus according to
genotype in specific locus, such

as a candidate gene

Model: Y;; = W; +¢€;

Genotype

99 | Q | QQ
34|29 | 31
37 |25 | 26
3.2

genotype i (i = qq, Qq and QQ)

A

-

P
y;;+ flowering time of replication j (j = 1,.., n;) of

uw;: expected flowering time of plants of genotype i

e;;+ residual (environment and polygenic effects)

= The expected phenotypic values w;, however, can be
expressed as a function of the additive and dominant

effects

K
Expected !

phenotypic
value
Ha

po=(y + )2

H3

Additive

QQ Qq

Dommance

Q9

Expected pheno‘rypfc value according to the
genotype on a specific locus.

13



The model can be
written then as: yy=t+xga+(d-]x;)o+e;
(" w: constant (mid-point flowering tfime between

homozygous genotypes)
< x;;» indicator variable (genotype), coded as -1, 0 and 1
for genotypes qq, Qq and QQ

o and B: additive and dominance effects

\
Ty, 1 [34]1 [1 -1 0] e,
Vi 3.7 1 -1 0 e,
In matrix notation: vl 132] |1 =1 olfu] e
yul=129]=(1 0 1 +|e,,
Yo 2.5 1 0 1(|18| |ep
yol 31 |1 1 0 ey,
yo| [26] |1 1 0 ey

More on the LS Methodology

iid
e~(0,10°) — ¢~0,06")
An estimate (B) of the vector B can be obtained by the method of

least-squares which, as discussed before, aims to minimize the
residual sum of squares, given (in matrix notation) by:

RSS = 2(&)2 =&"8=(y-XB)" (y-XB)

Taking the derivatives and equating o zero, it can be shown that

the least-squares estimator of Bis: .
B=(X"X)"X"y

D Tt is shown that E[B]=p and Var[B]=(X"X)"o"

14



Example

# Example with candidate gene

# vector of phenotypes
y<-matrix(c(3.4,3.7,3.2,2.9,2.5,3.1,2.6),nrow=7)

# incidence matrix (genotypes)

X<-matrix(c(1,1,1,1,1,1,1,-1,-1,-1,0,0,1,1,0,0,0,1,1,0,0),nrow=7)

#Matrix calculations
XX<-crossprod(X,X)
Xy<-t(X) %*% y

b <- solve(XX) %*% Xy @

qtl

Example

# R code for the example with a QTL affecting a specific quantitative trait
y<-matrix(c(95.9, 108.0, 96.5, 92.9, 101.0, 94.5, 93.7, 89.8,
101.2,103.9, 85.9, 109.4, 105.7, 98.4, 84.1, 103.1,
117.1,95.2,106.4, 104.7, 92.5, 123.9, 97.8, 100.5), nrow=24)

X<-matrix(c(1, 1, 1,1, 1, 1,1, 1,1, 1, 1,1, 1, 1,1, 1,1, 1,1,1,1,1, 1, 1,
-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0, 1, 1, 1, 1, 1, 1, 1, 1), nrow=24)

b <- solve(t(X) %*% X) %*% t(X) %*% y

# Using package Im

qtl < X[.2] '
reg <- Im(y ~ qtl) =

summary(reg)
S Candidate gene

15



More on the LS Methodology

The estimator B =p=(X"X)"'X"y is called ordinary least
squares (OLS) estimator, and it is indicated only in situations
with homoscedastic and uncorrelated residuals

If the residual variance is heterogeneous (i.e., Var(g,)=0; =w,0” ),
the residual variance matrix can be expressed as Var(e) = Wa?,
where W is a diagonal matrix with the elements w;, a better

estimator of B is given by: By = (X"TWX) ' XTWy

which is generally referred to as weighted least squares (WLS)
estimator.

Furthermore, in situations with a general residual variance-
covariance matrix V, including correlated residuals, a
generalized least squares (GLS) estimator B, =(X"V'X)X'V'y
is obtained by minimizing the generalized sum of squares, given

bY:  Gss=e"Ve=(y-XB) V- (y-XB)

Example

Suppose an experiment on a completely randomized
design to compare three diets on beef cattle growth.
The results in terms of weight gain are given below :

Diets Model: | y. =u,; +e¢;
A B C
106 84 92 ryu: weight gain observed

on animal j of diet i
99 99 99 <

97 89 85 w;: mean of diet i

e..: residual term

104 | 80 | 91 &

99 | 82 | 89 (i=1,2,3 (Diets A, B and C)
105 92 =12 .n

95 \(n1=7,n2=5,n3=6)

16



v, ] [106
Yi2 9
Vi 97
Yis 104
Yis 9
Yi6 105
Y17 95
Yo 84
Y2 9
Y3 B 89
Yo4 80
Yas 82
Ysi 92
Y32 9
Y33 85
Yas 91
Vs 89
Y6 | 92

[ e = I = R e R = R = R e e

[ e = = e e =l = = = )

A i I — R = i = R R e - S - e =)

W
W,
Uy

LS Estimates
(

700
12 X'X=[0 5 0}
NE 00 6
€
€5 17 0 0
€6 X™X)"'=[0 1/5 0
e 0 0 1/6
eZI
e, 705
e E> < X'y= 434‘

548
Ca
€2 17 0
G h=X"X)"X"y=| 0 1/5
€3 0 0
633
ey 70577 ‘ l 100.7 ‘
€35 fi=| 434/5 |=| 86.8
ey K 548/6 913

®

diets

0 705
0 434
1/6 548

Maximum Likelihood Estimation

Likelihood Function: any function of the model parameters
that is proportional to the density function of the data

Hence, to use a likelihood-based approach for estimating
model parameters, some extra assumptions must be made
regarding the distribution of the data

In the case of the linear model Yy = XP+€ , if the
residuals are assumed normally distributed with mean
vector zero and variance-covariance matrix V,
i.,e. €~MVN(0,V), the response vector y is also
normally distributed, with expectation E[y] = X and
variance Var[y] =V

17



Maximum Likelihood Estimation
The distribution of y has a density function given by:
/2 -1/2 1 Tyl
p(y B V) = 2m) "2 |V exp{—z(y _XP)'V(y —XB)}

so that the likelihood and the log-likelihood functions
can be expressed respectively as:

L(B.V) | V[ eXp{—%(y—Xﬁ)TV‘l(y—XB)}
and

1B,V) = oglL(B, V)]~ log | V |~y = XB)" V"' (y - XP)

Maximum Likelihood Estimation

Assuming V known, the likelihood equations for p are
given by taking the first derivatives of I(B,V) with
respect to p and equating it fo zero:

AB.V) _ 9 o BTV (v XEB)
op _6I3(y XB) V' (y-Xp)=0

from which the following system of equations is
obtained: Tl N
X'V'Xp=XV'y

The maximum likelihood estimator (MLE) for p is

given then by: )
MLEB)=p=(X"V'X)"'X"Vy

18



Maximum Likelihood Estimation

If the inverse of X'V'X does not exist, a
generalized inverse (X'V™'X)™ can be used to obtain
a solution for the system of likelihood equations:

BO — (XTv—lx)— XTv—ly

Note: Under normality the MLE coincides with the
GLS estimator discussed previously. Similarly, in
situations in which the matrix V is diagonal, or when
V can be represented as V =1,0° , the MLE
coincides with the WLS and the OLS estimators,
respectively

Maximum Likelihood Estimation

The expectation and the variance-covariance matrix of the
MLE are given by:

E[ﬁ] =E[(X'V'X)"'X'Vy]=X"V'X)"'X"V'E[y]= X"V'X)'X"V'XB =

Varp] = Va(X"V'X)" X"V y] = (X"V'X) "' X"V 'Var[y[V'X(X"V'X) !
=X'VX)'X'VIVVIXX'V'X)" = (XTVT'X)!

As B is a linear combination of the response vectory, we
have that B~MVN(B,(X'V'X)™") , from which confidence
intervals (regions) and hypothesis testing regarding any
(set of) element(s) of B can be easily obtained

The estimation of variance and covariance parameters will
be discussed later

19



Maximum Likelihood Estimation

= Note: In the case of the linear model y=Xp +¢ |
with € ~MVN(0,Ic6%), it can be shown that:

B=X"X)"X"y — B~NE.(X"X)"'0%
& =Ly-Xpyy-xp)=Lny-xpIr
n n

2
5 ~ o2 Kok (E[g,z]=n_‘kc,z)
n n

2
2 X(n-k)

n-k

R 1 ~ -
5 =5 =——& =——||y-XB|’ — & ~o
n-k

Test for
Independence

Guilherme J. M. Rosa
University of Wisconsin-Madison

20



Test for Independence

T can't move in with my
parents. They moved in
with my grandparents.”

1 0.8 0.4 0 -0.4 -0.8 -1

S #

If two variables are independent, their
corresponding Pearson's correlation coefficient is O,
but the converse is not true. However, in the special

case of joint multivariate normal distribution,
uncorrelatedness is equivalent to independence.

21



Testing for Independence

- Two random variables are independent if the

realization of one does not affect the probability
distribution of the other

* The concept of independence extends to dealing

with collections of more than two events or random
variables (pairwise or mutually independent)

» Testing for independence: chisquare-based test

(multinomial variables), correlation test
(multivariate normal), ...

* More generally: mutual information (parametric,

semiparametric and permutation tests)

1

Multinomial Data

Variable A, with I categories: A;, A,,..., A;
Variable B, with J categories: By, B,,...,B;

(T x J) Contingency Table

B, B, Tt B; | Totals
A Ny Niz Ny n.
A, Ny1 Ny, N2g Ny,
A Ny N, Ny nr.
Totals| n, n,, N,z n,.,

n;: observed count in category A;B;

N, = N+ ..+ nizand N = N+ ..+ Ny

22



(I x J) Contingency Tables

n;: observed frequencies
n. and n,; marginal frequencies

Under the assumption of independency between A and B:

n, xn,.
Expected frequencies: E, = ——
s 9=-1(J-1)
Statistical test for Independence: degrees of

freedom

I J n.— E 2
Pearson chi-squared: X’ = EEM ~ X2/

P
i1 j=1 ij

I J n.
. . . . 2 i
Deviance statistics (LRT): G =2 2 Znii log(E_J)

i=l j=I ij

Three-Way Tables

[ Variable A, with I categories: Ay, A,,..., A;
1 Variable B, with J categories: By, B....,B;
|_Variable C, with K categories: C;, C,,...,C¢
C
A B C, oo | Cy
A B n R ¢
- A - 1K Saturated Model:
A B; Mg | """ ] Mgk Wi = E(ny, ) = n+++ﬁ:ijk
n..
_ ijk
Ar B, L% I I WL ST =M
AL Bs Ny | oo | Nogg

23



B: Victim's Race

Ex amp le { A: Defendant's Race
C: Death Penalty

Defendant's | Victim's Death Penalty

Race Race Yes No

) White 19 132
i Black 0 9
White 11 52

Black Black 6 97

Is there an association between death penalty,
defendant’s race and victim's race?

(Agresti, 1990)

Marginal Tables
Defendant’s Race x Death Penalty (A x C)

Defendant's Death Penalty

Race Yes No

White 19 141

Black 17 x| 149

Marginal Odds Ratio: \ J

Dy = Enijk
A 19149 <
O, = =1.18 il
17x141

Same partial tables for [Defendant's Race x Victim's Race]
and [Victim's Race x Death Penalty]

24



Partial Tables

Conditional distribution, e.g. A x C tables
for particular values of B

Victim = White (A x C | B,)

Defendant's Death Penalty
Race Yes No
White 19 132
Black 11 52
Conditional Odds: 8, =22 - 0.6804
v 11x132
Partial Tables
Victim = Black (A x C | B,)
Defendant's Death Penalty
Race Yes No
White 0 9
Black 6 97
Conditional Odds: 0., = 05x97:5 _ 7895
* 6.5%95

Ad-hoc method with zero counts: add 0.5 to each cell value

Note: If conditional odds is different from 1 for
at least one level of B, we say that variables
A and C are conditionally associated.

25



Simpson's Paradox

Marginal and partial (conditional) associations
in opposite direction

A A, B continuous
A ¢ {C binary

v
(ve)

UC Berkeley Gender Bias Story

- One of the best-known examples of Simpson's paradox

- Potential gender bias among graduate school
admissions at UC-Berkeley in 1973

- Admission figures showed that men applying were more
likely than woman to be admitted:

Table 1. Dccisions on applications to Graduate Division for fall 1973, by sex of applicant—
naive aggregation. Expected frequencies.are calculated from the marginal totals of the observed
frequencies under the assumptions (1 and 2) given in the text. N = 12,763, x*= 110.8,
df.=1, P=0 (18).

Outcome
Difference
Applicants Observed Expected
Admit Deny Admit Deny Admit Deny
Men 3738 4704 3460.7 4981.3 2713 — 2713
Women 1494 2827 177113 2549.7 — 2713 2773

- Admission rates:
Men: 3738/8442 = 0.443, Women: 1494/4321 = 0.346

26



UC Berkeley Gender Bias Story

- However, when examining the 85 individual departments,
it appeared that 6 were significantly biased against men,
whereas only 4 were significantly biased against women.

- In fact, the pooled and corrected data showed a small
but statistically significant bias in favor of women.

- Data from the six largest departments:

Men Women
Department Applicants | Admitted | Applicants | Admitted

A 825 62% 108 82%
B 560 63% 25 68%
C 325 37% 593 34%
D 417 33% 375 35%
E 191 28% 393 24%
F 373 6% 341 7%

UC Berkeley Gender Bias Story

- The research by Bickel et al (1975) concluded that
women tended fo apply to competitive departments
with low rates of admission even among qualified
applicants (such as English Department), whereas men
tended to apply to less-competitive departments with
high rates of admission among qualifies applicants
(such as engineering and chemistry).

Bickel PJ, Hammel EA and O'Connell JW. Sex bias in graduate
admissions: data from Berkeley. Measuring bias is harder
than usually assumed, and the evidence is sometimes
contrary to expectation. Science 187: 398-404, 1975.




O Number of applicants < 40
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Percent women applicants
Fig. 1. Proportion of applicants that are women plotted against proportion of appli-
cants admitted, in 85 departments. Size of box indicates relative number of applicants
to the department.

Models of Independence and
Associations in 3-Way Tables

Mutual (complete) independence (A,B,C)
Joint independence (AB,C)
Marginal independence (A,B) O

. Conditional independence (AC,BC) ]

Homogeneous association (AB,AC,BC)

28



Conditional Independence

* Three possible models with 3 variables:
(AB,AC), (AB,BC) and (AC,BC)

* Take (AB,AC) as an example:
PB=j,C=k|A=i)=PB=j|A=i)xP(C=k|A=i)

+ Odds-ratios: B x C for each level of A

HO: eBc(A:i) =1 for' every i c ////7\\\ A
Hg: at least one B¢ (4. 2 1 )

* Under Hy, cell probabilities are equal tfo:
m, =P(A=1)P(B=jC=klIA=i)
=P(A=1))P(B=jlA=1)P(C=kIA=1i)

=TT, 0T,

i+ jli
A~

=n../n

i++ i++ +++

« ML estimates:

ﬁ:jli =Ny, /n,,
M =N, /N,
. . ~ Ny, XM
- Estimated expected frequencies: E; = —+——
1’1i++
= Overall X? or G2 by summing individual test statistics
across levels of A. Degrees of freedom: I(J-1)(K-1).
Notice: Conditional independence can be rejected if

any of the partial tests is rejected.

29



More Complex Data Response

Explanatory variable

> Alternative models for more variables
complex data: log-linear model, —
logistic regression, generalized A B Y
linear mixed models, etc. 1 1 1
1 1 1
Response 1 2 0
A B
Yes | No 2 1 1
B, | 2 | O 2 | 1] 1
A
' B2| 0|1 = o
Jelae] e
/B2 | 1 |0 > T2 11

Generalized linear model: binary outcome, logit,n=p+ A + B

Gaussian Distribution

. . o
Marginal correlation: Pxy =5
OXOY
Inference:
A~ 21=1(Xi_ﬁx)(Y1_@Y) ~ n-2
Oxy = - = - = t=Pyxy 1_—A2 ~ Hg=n-2)
\/EH(Xi _MX) Ei=l (Yi _MY) Pxy

Fisher transformation:

A Hy:p=0
z=arctanh(§XY)=lln(“ﬁ)—> n—3xlzl ~ N(0,1)
2 1-pPyy

30



Gaussian Distribution
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Mutual Information

« Mutual information (MI): measures of the mutual
dependence between tfwo random variables X and Y,

or the "amount of information" (in shannons, or bits)

obtained about one variable, through the other
variable.

* MI determines how similar the joint distribution
p(X.,Y) is to the products of factored marginal
distribution p(X)p(Y).




