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Linear Mixed Models  

Guilherme J. M. Rosa 
University of Wisconsin-Madison 

Mixed Effects Models 
Frequently, linear models contain factors whose levels 
represent a random sample of a population of all 
possible factor levels 

Models containing both fixed and random effects are 
called mixed effects models 

Linear mixed effects models have been widely used in 
analysis of data where responses are clustered around 
some random effects, such that there is a natural 
dependence between observations in the same cluster 

For example, consider repeated measurements taken on 
each subject in longitudinal data, or observations taken 
on members of the same family in a genetic study 
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Linear Mixed Effects Model 

where: 

 y: response vector; observations 

β: vector of fixed effects 

 u: vector of random effects; u ~ N(0, G) 

 X and Z: (known) incidence matrices 

 e: residual vector; e ~ N(0, Σ) 

eZuXβy ++=

Linear Mixed Effects Model 
Generally, it is assumed that u and e are 
independent from each other, such that:  

 

 

 

 

Inferences regarding mixed effects models 
refer to the estimation of fixed effects, the 
prediction of random effects, and the 
estimation of variance and covariance 
components, which are briefly discussed next  
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Estimation of Fixed Effects 

))(,(MVN~)(ˆ 11T1T11T −−−−−= XVXβyVXXVXβ

eZuε +=εXβy +=Let                    , where 
 

 

 

 
such that                             , where 
 
Under these circumstances, the MLE for β is:  

0euZeZuε =+=+= ][E][E][E][E

ΣZGZeZuZeZuε +=+=+= TT ][Var][Var][Var][Var

),(MVN~ VXβy ΣZGZV += T

As G and Σ are generally unknown, an estimate of V 
is used instead such that the estimator becomes: 

 

The variance-covariance matrix of     is now 
approximated by 

Note:                     is biased downwards as a 
consequence of ignoring the variability introduced 
by working with estimates of (co)variance 
components instead of their true (unknown) 
parameter values 

yVXXVXβ 1T11T ˆ)ˆ(ˆ −−−=

β̂
11T )ˆ( −− XVX

11T )ˆ( −− XVX

Estimation of Fixed Effects 
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Approximated confidence regions and test statistics 
for estimable functions of the type          can be 
obtained by using the result: 

 

 

 

where             refers to an F-distribution with                            
                       degrees of freedom for the numerator, 
and        degrees of freedom for the denominator, 
which is generally calculated from the data using, for 
example, the Satterthwaite’s approach 

βKT

],[

0T11TTT0T

DN
F

)(rank
)())(()(

ϕϕ

−−−

≈
K

βKKXVXKβK

],[ DN
F ϕϕ

)(rankN K=ϕ
Dϕ

Estimation of Fixed Effects 

In addition to the estimation of fixed effects, very 
often in genetics interest is also on prediction of 
random effects.  

In linear (Gaussian) models such predictions are given 
by the conditional expectation of u given the data, 
i.e.            . 

Given the model specifications, the joint distribution 
of y and u is: 

]|[E yu
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Estimation (Prediction) of 
Random Effects 
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])[E]([Var][Cov][E]|[E 1T yyyyu,uyu −+= −

)())( 1TT1T XβyΣ(ZGZGZXβyVGZ −+=−= −−

)ˆ()ˆ 1TT βXyΣ(ZGZGZu −+= −

From the properties of multivariate normal distribution, 
we have that: 

 

 

The fixed effects β are typically replaced by their 
estimates, so that predictions are made based on the 
following expression: 

 

Estimation (Prediction) of 
Random Effects 

Mixed Model Equations 
The solutions    and    discussed before require  
As V can be of huge dimensions, especially in animal 
breeding applications, its inverse is generally 
computationally demanding if not unfeasible.  

However, Henderson (1950) presented the mixed 
model equations (MME) to estimate β and u 
simultaneously, without the need for computing       

The MME were derived by maximizing (for β and u) 
the joint density of y and u, expressed as: 

β̂ û 1−V

p(y,u |β,G,Σ)∝  | Σ |−1/2 |G |−1/2
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Mixed Model Equations 

uGuZuXβyΣZuXβyGΣΣG,βuy 1T1T )()(|||| )],|,(plog[ −− +−−−−++∝=ℓ

ZuΣyXβΣyyΣyGΣ 1T1T1T 22|||| −−− −−++=

uGuZuΣZuZuΣXβXβΣXβ 1T1TT1TT1TT 2 −−−− ++++

The logarithm of this function is: 
 

 

 

 

The derivatives of    regarding β and u are: 
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Equating them to zero gives the following system: 
 

 

 

which can be expressed as: 

 

 

 

known as the mixed model equations (MME) 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

++

+
−

−

−−−

−−

yΣZ
yΣX

uGuZΣZβXΣZ
uZΣXβXΣX

1'

1'

11'1'

1'1'

ˆˆˆ
ˆˆ

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

+ −

−

−−−

−−

yΣZ
yΣX

u
β

GZΣZXΣZ
ZΣXXΣX

1T

1T

11T1T

1T1T

ˆ

ˆ

Mixed Model Equations 



7 

BLUE and BLUP 

Using the second part of the MME, we have that: 
 

so that: 

 

It can be shown that this expression is equivalent to: 

 

and, more importantly, that    is the best linear 
unbiased predictor (BLUP) of u 

yΣZuGZΣZβXΣZ 1T11T1T ˆ)(ˆ −−−− =++
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û

BLUE and BLUP 

yΣXuZΣXβXΣX 1T1T1T ˆˆ −−− =+

yΣXβXyΣZGZΣZZΣXβXΣX 1T1T111T1T1T )ˆ()(ˆ −−−−−−− =−++

yΣZGZΣZZΣΣXXΣZGZΣZZΣΣXβ ])([}])([{ˆ 1T111T11T11T111T11T −−−−−−−−−−−−− +−+−=

Using this result into the first part of the MME, we 
have that: 

 

 

 

Similarly, it is shown that this expression is 
equivalent to                                 , which is the best 
linear unbiased estimator (BLUE) of β. 

 

yVXXVXβ 1T11T )(ˆ −−−=



8 

It is important to note that    and     require 
knowledge of G and Σ. These matrices, however, 
are rarely known. This is a problem without an 
exact solution using classical methods.  

The practical approach is to replace G and Σ by 
their estimates (     and     ) into the MME: 

β̂ û

Ĝ Σ̂
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Estimation of Variance Components 

Consider the data set below, related to 
observations of half-sib families of k 
unrelated sires. The following model can 
be used to represent these data: 

ijiij esy ++µ=

where yij represents the phenotypic trait observation 
of progeny j (j = 1, 2,…, ni) in family i, µ is a mean, si is 
an effect common to all animals having sire i, and eij is 
a residual term  
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ANOVA Estimation 
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Estimation of Variance Components 
ANOVA Estimation 

The sire effect si is equivalent to the transmitting ability 
(which is equal to one-half additive genetic value) of sire 
i, as one-half of its genes are (randomly) transmitted to 
each of its ni progeny.  
 
The residual terms eij refer to additional genetics 
effects (such as the effect of dams) and environmental 
components.  
 
It is assumed that                       and      ),0(~s 2
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From the model settings discussed before we have that                  

                                      and  
 
The overall sample mean is given by 
 
where               , and                       are sire-specific means. 
 

The ANOVA approach consists of an orthogonal 
decomposition of the total sum of squares (TSS) into 
between classes (or, in our case, sires) and within classes 
(or residual) components. The corrected (in terms of the  

general mean) TSS is given by: 
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By adding and subtracting      within the parentheses, the 
TSS can be expressed as: 

•iy

It is seen that the last part of this expression is equal to 
zero, so that TSS can be written as two components: 

which are the sire and the residual sum of squares, 
respectively. The SSS term measures the variation of 
each progeny family around the overall mean, while the 
RSS term measures the extra variation related to each 
observation around its sire average 
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It can be shown that the expectation of these sums of 
squares terms are: 

so that the ANOVA estimators of the sire and residual 
variance components are given by: 

In the specific case of balanced data, i.e. the same 
progeny size for all sires,                        and the ANOVA 
estimators become: 
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ANOVA approach works well for simple models (such as a 
one-way structure) or balanced data (such as data from 
designed experiments with no missing data), but they are 
not indicated for more complex models and data structures 

Other proposed methods: expected mean squares approach 
of Henderson (1953), and the minimum norm quadratic 
unbiased estimation (Rao 1971a, 1971b), among others. 

However, maximum likelihood based methods are currently 
the most popular, especially the restricted (or residual) 
maximum likelihood (REML) approach, which attempts to 
correct for the well-known bias in the classical maximum 
likelihood (ML) estimation of variance components. These 
two methods are briefly described next. 

Estimation of Variance Components 

Maximum likelihood estimates of the variance 
components can be obtained by maximizing the log-
likelihood                  with respect to each element of 
G and Σ, after replacing β by 

Alternatively, G, Σ, and β can be estimated 
simultaneously by maximizing their joint log-likelihood 
with respect to the variance components and the 
fixed effects. 

),(L ΣG,β
yVXXVXβ 1T11T )(ˆ −−−=

Estimation of Variance Components 
Maximum Likelihood (ML) Estimator 
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ijiij esy ++µ=

),0(N~s 2
s

ind

i σ ),0(N~e 2
e

ind

ij σ

As a simple example of maximum likelihood 
estimation of variance components, consider the 
balanced case (i.e., constant progeny sizes) half-sib 
families data set discussed previously, and the 
linear model: 

 

 

with the same definitions as before, but with the 
additional assumption of normality of both the sire 
and the residual effects, i.e.: 

and 

In matrix notation, this model can be expressed as: 
 

 

 

 

 

 

where            represents the vector of 
observations of progeny i (i.e., relative to sire i); 1n 
and 0n represent n-dimensional column vectors of 
1’s and 0’s, respectively; and                          d  is 
the vector of residuals associated with progeny i 
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The vector of observations                      has then a 
multivariate normal distr. with mean vector         and 
variance-covariance matrix given by                           , 
and its density function (from which the likelihood 
function obtained) can be written as: 

 

 

 

 

 

where                 is an (n × n) matrix of 1’s, and ⊗ is the 
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The log-likelihood function can be written then as: 
 

 

By taking the derivatives and setting them to 0, the 
following solutions are obtained: 

 

 

from which ML estimates of the variance components 
are  obtained,  except  if         , in  which  case  the 
estimate is set to zero 

ML estimates of variance components are biased 
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of freedom used for estimating the fixed effects 
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Restricted (or residual) maximum likelihood approach 
(REML): corrects the bias associated with ML 
estimates by taking into account the degrees of 
freedom used for estimating the fixed effects 

REML maximizes the likelihood function of a set of 
error contrasts d = LTy, where  L  is  a [n x (n – p)] 
full-rank matrix with columns orthogonal to the 
columns of the incidence matrix X 
The vector d follows a multivariate normal 
distribution with null mean vector and variance-
covariance matrix LTVL = LT(ZGZT + Σ)L. Note that 
the distribution of d does not depend on β.  

Estimation of Variance Components 
Residual Maximum Likelihood (REML) Estimator 

The residual likelihood function for the variance 
components is then: 

 

 

 

Another approach for obtaining the residual 
likelihood function for the variance components is 
by integrating the fixed effects out of the ‘full’ 
likelihood function, i.e.: 
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Recall the balanced half-sib families data set, and 
its associated likelihood function: 
 
 
 
 
 
Its residual likelihood is then: 
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By taking the derivatives with respect to λ 
and    , and by using the invariance property of 
maximum likelihood estimators, the following 
solutions are obtained: 

 

 

 

 

which are the REML estimates of the variance 
components, except if            , i.e. if   
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Explicit forms of ML and REML estimators are 
often not available for more complex mixed 
effects models 

ML and REML estimates are then generally 
obtained by iterative approaches such as the 
expectation-maximization (EM) algorithm and 
Newton-Raphson-based procedures 
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Animal/plant breeding programs are based on the 
principle that phenotypic observations on related 
individuals can provide information about their 
underlying genotypic values 
 
The additive component of genetic variation is the 
primary determinant of the degree to which 
offspring resemble their parents, and therefore 
this is usually the component of interest in 
artificial selection programs 

Mixed Models in Animal and 
Plant Breeding 

Many statistical methods for analysis of genetic 
data are specific (or more appropriate) for 
phenotypic measurements obtained from planned 
experimental designs and with balanced data sets 
 
While such situations may be possible within 
laboratory or greenhouse experimental settings, 
data from natural populations and agricultural 
species are generally highly unbalanced and 
fragmented by numerous kinds of relationships 

Mixed Models in Animal and 
Plant Breeding 
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Culling of data to accommodate conventional statistical 
techniques (e.g. ANOVA) may introduce bias and/or lead 
to a substantial loss of information 

The mixed model methodology allows efficient estimation 
of genetic parameters (such as variance components and 
heritability) and breeding values while accommodating 
extended pedigrees, unequal family sizes, overlapping 
generations, sex-limited traits, assortative mating, and 
natural or artificial selection 

To illustrate such application of mixed models in breeding 
programs, we consider here the so-called Animal Model in 
situations with a single trait and a single observation 
(including missing values) per individual 

Animal Model 

The animal model can be described as: 

eZuXβy ++=

y is an (n × 1) vector of observations (phenotypic scores) 
β is a (p × 1) vector of fixed effects (e.g. herd-year-

season effects) 
u ~ N(0, G) is a (q × 1) vector of breeding values (relative 

to all individuals with record or in the pedigree file, 
such that q is in general bigger than n) 

e ~ N(0, Inσe2) represents residual effects, where σe2 is 
the residual variance 

Animal Model 
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The Matrix  A 
The matrix G describing the covariances among the 
random effects (here the breeding values) follows 
from standard results for the covariances between 
relatives 

It is seen that the additive genetic covariance 
between two relatives i and i’ is given by             , 
where       is the coefficient of coancestry between 
individuals i and i’, and       is the additive genetic 
variance in the base population 

Hence, under the animal model,                , where A 
is the additive genetic (or numerator) relationship 
matrix, having elements given by 

2
a'ii2 σθ

2
aσ

2
aσ= AG

'ii'ii 2a θ=

'iiθ

The Matrix  A 

For each animal i in the pedigree (i = 1, 2,…,n), going from 
older to younger animals, compute aii and aij (j = 1, 2,…,i-1) 
as follows: 

If both parents (s and d) of animal i are known: 

 aij = aji = (ajs + ajd)/2 and aii = 1 + asd/2 

If only one parent (e.g. d) of animal i is known: 

 aij = aji = ajd/2 and aii = 1 

If parents unknown: 

 aij = aji = 0 and aii = 1 
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Example 

1 2 

4 3 

5 6 

Animal Sire Dam 
1 - - 
2 - - 
3 1 2 
4 1 - 
5 4 3 
6 5 2 

pedigree matrix A 

In general, in animal/plant breeding interest is 
on prediction of breeding values (for selection 
of superior individuals), and on estimation of 
variance components and functions thereof, 
such as heritability 

The fixed effects are, in some sense, nuisance 
factors with no central interest in terms of 
inferences, but which need to be taken into 
account (i.e., they need to be corrected for 
when inferring breeding values) 

Animal Model 
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Since under the animal model                        and                    
                  , the mixed model equations can be 
expressed as: 
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Animal Model 

Conditional on the variance components ratio λ, the 
BLUP of the breeding values are given then by: 
 
 
 
These are generally referred to as Estimated Breeding 
Values (EBV) 
 
Alternatively, some breeders associations express 
their results as Predicted Transmitting Abilities (PTA) 
(or Estimated Transmitting Abilities (ETA) or Expected 
Progeny Difference (EPD)), which are equal to half the 
EBV, representing the portion of an animal’s breeding 
values that is passed to its offspring 

)ˆ()(ˆ T11T βXyZAZZu −λ+= −−
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The amount of information contained in an animal’s 
genetic evaluation depends on the availability of 
its own record, as well as how many (and how close) 
relatives it has with phenotypic information 
 
As a measure of amount of information in livestock 
genetic evaluations, EBVs are typically reported 
with its associated accuracies 
 
Accuracy of predictions is defined as the 
correlation between true and estimated breeding 
values, i.e.,                     
 
Instead of accuracy, some livestock species 
genetic evaluations use reliability, which is the 
squared correlation of accuracy (   ) 

)u,û(r iii ρ=

2
ir

The calculation of               requires the diagonal 
elements of the inverse of the MME coefficient 
matrix, represented as: 

 

 
 
It is shown that the prediction error variance of 
EBV      is given by: 

 

 
where      is the i-th diagonal element of       , 
relative to animal i.  

Prediction Accuracy 
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Prediction Accuracy 

The PEV can be interpreted as the fraction of 
additive genetic variance not accounted for by 
the prediction 
 
Therefore, PEV can be expressed also as: 

 

 

such that                             , from which the 
reliability is obtained as: 
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Animal Model 
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Breeding values:                        , with 

Animal Model 
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R Code 
y<-matrix(c(310,270,350),nrow=3) 
X<-matrix(c(1,1,0,0,0,1),nrow=3) 
Z<-matrix(c(1,0,0,0,0,0,0,1,0,0,0,0,0,1,0),nrow=3, byrow = TRUE) 
A<-matrix(c(1,0,0.5,0.5,0.25, 
            0,1,0,0.5,0, 
            0.5,0,1,0.25,0.5, 
            0.5,0.5,0.25,1,0.125, 
            0.25,0,0.5,0.125,1),nrow=5) 
 
h2<-1/3 # heritability 
a=(1-h2)/h2 
 
# crossproducts 
XX<-crossprod(X,X) 
XZ<-t(X) %*% Z 
ZX<-t(Z) %*% X 
ZZ<-crossprod(Z,Z)+a*solve(A) 
 
# mixed model equations 
# coefficient matrix and right hand side 
C<-rbind(cbind(XX,XZ),cbind(ZX,ZZ)) 
rhs<-rbind(t(X) %*% y,t(Z) %*% y) 
 
#solution 
theta.hat <- solve(C) %*% rhs 

animal model 
toy example 
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The animal model can be extended to model multiple 
(correlated) traits, multiple random effects (such as 
maternal effects and common environmental effects), 
repeated records (e.g. test day models), and so on 

Example (Mrode 1996, pp74-76): Weaning weight (kg) 
of piglets, progeny of three sows mated to two boars: 

Animal Model 

A linear model with the  (fixed) effect of sex, and the 
(random) effects of common environment (related to 
each litter) and breeding values can be expressed as X: 

 

 

 

Assuming that            ,              and            , the MME 
are as follows: 

 

 

 

where                         and 
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The BLUEs and BLUPs 
(inverting the numerator 
relationship matrix) are: 

Mrode example 

ry1,y2 = h1h2ra1,a2 + e1e2rε1,ε2

X1 

y1 
β1 β2 

y2 

a1 a2 

ε1 ε2 

X2 h2 h1 

e2 e1 

ra1,a2

r
ε1,ε2

Multiple (Correlated) Traits 
Genetic 

correlation 

Environmental 
correlation 

Phenotypic correlation: 

h j = h j
2

e j = 1− h j
2



27 

Multiple (Correlated) Traits 
The animal model can be extended for the joint analysis 
of multiple traits 
Let the model for each of k traits be: 
 
 
where j is an index to indicate the trait (j = 1, 2,…,k).  
For the joint analysis of the k trait, the model becomes: 
 
 
with design matrices given by: 

y j =X jβ j +Z ja j + ε j

y =Xβ+Za+ ε
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Multiple (Correlated) Traits 
In this case it is assumed that: 
 
 
 
 
where G and Σ are the genetic and residual variance-
covariance matrices, given by: 
 
 
 
 
 
 
Note: ⊗ represents the direct (Kronecker) product 
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Multiple (Correlated) Traits 

The MME for multi-trait analyses are of the same form 
as before, i.e.: 
 
 
 
 
 
 
 
 
from which the BLUEs and BLUPs of β and a can be 
obtained. 

Multiple (Correlated) Traits 

The dimensionality of multi-trait MME, however, can 
become a hurdle for solving it when more than two or 
three traits are considered 
 
An alternative for the analysis of multiple traits is to 
use a canonical transformation of the traits, which 
consists of transforming the vectors of correlated 
traits into a new vector of uncorrelated variables 
 
In such case, each transformed variable can be analyzed 
independently using standard single trait models, and 
subsequently the estimated breeding values are 
transformed back to the original scale of measurement 


