
Outline MT Selection

• Properties of EBVs
• Single Trait Selection Index
• Multiple Trait Selection Index

– Predicting Response
– Manipulating Response

– MT Index and MTBLUP selection
– Increased Accuracy from MT Selection
– Effect of Incorrect Parameters
– Other Issues



Selection Criteria Breeding Objective

Own performance  X1

Performance on relatives  X2

Correlated Traits      Xn

Breeding Value (s)

Selection Index (multiple regression)

EBV = Index = b1X1 + b2X2 + b3X3 +…..+ bnXn
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Finding the optimal index weights

Regression of A on Xi

Regression coefficient  =

Examples:

X1 =  Own Performance  b =  h2

X1 =  Dam Performance  

b =
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Finding the optimal index weights

Regression of A on Xi

Regression coefficient  =

Examples:

X1 =  Own Performance  
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Progeny  Testing

= b1P1 P1 = Mean of n progeny

b1 = Index Weight 

=  “heritability of progeny test

b1 depends on the number of progeny 

and on the heritability
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See also 
GEST325

Note, algebra 
is to 
illustrate not 
to learn



Some basic QG: variances

X = A + E
Var(X) = var(A) + var(E) = VA + VE  

(no cov. Between A,E)

var(mean) = common variance + specific/n

X1 = Mean of n Full Sibs

var(X) =  
1
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Some basic QG
covariances

X = A + E

cov(X1 ,A ) = cov(A,A) + cov(E,A) = VA

cov(X1 , X2) = aijVA …….if relatives
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Finding the optimal index weights

Regression of A on X; X’=[X1, X2,…. Xn]

Selection Index (multiple regression)

EBV = Index = b1X1 + b2X2 + b3X3 +…..+ bnXn
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Selection index with more information sources
(multiple regression)

X = vector with phenotypes (“Pi values” = sel. criteria)

A = True breeding Value

var(X) = P = matrix = 

cov(X,A) = G = vector =  
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Opt. weights: b = P-1G = “cov/var_X”      (single trait Sel Index eqn: Pb = G)



Example: X1= weight for own phenotype
X2= mean of n full sibs

n=3 n=10
h2 b1 b2 b1 b2 

0.10 0.09 0.12 0.08 0.32
0.30 0.26 0.26 0.22 0.49
0.50 0.43 0.29 0.38 0.48
0.70 0.62 0.24 0.57 0.36

• Own performance more important with high heritability
……..and smaller amount of family info

• Otherwise, family information more important



Accuracy of selection index
rIA = correlation between Index and A

= cov(I,A) =     σ2
I = σI / σA = √(b’Pb/VA)

σI σA σI σA 

because cov(I,A) = cov(bX,A) = b’cov(X,A)
= b’G = b’Pb =  b’var(X)b

=  var(bX) 
=  var(I)

Note: I = EBV = sel. criterion
A = BV = Objective

à rIA = sqrt(var(EBV) / VA )= accuracy = correlation



Summary of this lecture
• Selection Index Theory can be used to work out weights and 

accuracy for a given set of information about an particular EBV

• Quantitative Genetic Theory and matrices (P, G)  are used to 
work out such index weights  (b) and accuracies

• In Genetic Evaluation we use BLUP where this all occurs 
‘automatically’

• Selection Index Theory still useful to predict what happens
– Accuracy for a given amount of information
– Importance of own vs family information for given situations


