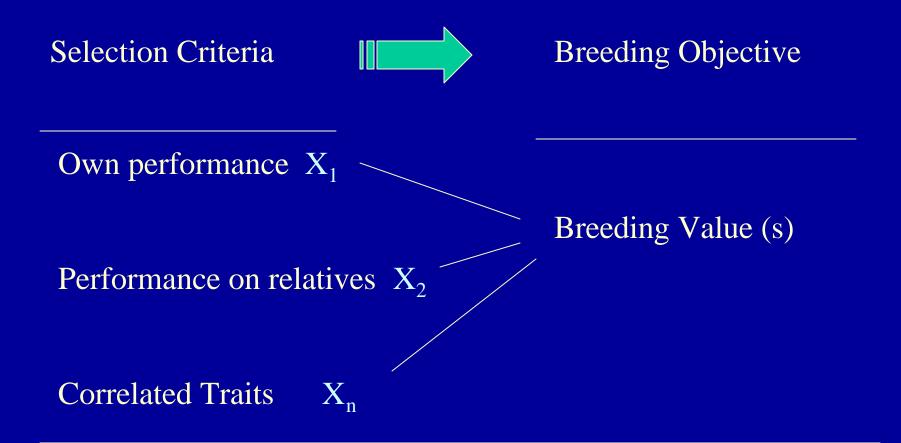
Outline MT Selection

- Properties of EBVs
- Single Trait Selection Index
- Multiple Trait Selection Index
 - Predicting Response
 - Manipulating Response
 - MT Index and MTBLUP selection
 - Increased Accuracy from MT Selection
 - Effect of Incorrect Parameters
 - Other Issues



Selection Index (multiple regression)

 $EBV = Index = b_1X_1 + b_2X_2 + b_3X_3 + \dots + b_nX_n$

Finding the optimal index weights

Regression of A on X_i

Regression coefficient =

 $\frac{\operatorname{cov}(X_i, A)}{\operatorname{var}(X_i)}$

Examples:

 $X_1 = Own Performance$ $b = h^2$

 $X_1 =$ Dam Performance

b =

 $\frac{\frac{1}{2}V_{A}}{V_{A} + V_{E}} = \frac{1}{2}h^{2}$

Finding the optimal index weights

Regression of A on X_i

Regression coefficient =

 $\frac{\operatorname{cov}(X_i, A)}{\operatorname{var}(X_i)}$

Examples:

 $X_1 = Own Performance$

$$\frac{V_A}{V_A + V_E} = h^2$$

 $X_1 =$ Dam Performance

$$b = \frac{\frac{1}{2}V_A}{V_A + V_E} = \frac{1}{2}h^2$$

Progeny Testing

 $\hat{A} = b_1 P_1$ $P_1 = Mean of n progeny$ See alsoGEST325 $b_1 = Index Weight$ = "heritability of progeny test Note, algebrais toillustrate notto learn

> b₁ depends on the number of progeny and on the heritability

$$b_{1} = \frac{\frac{1}{2}V_{A}}{\frac{1}{4}V_{A} + (V_{P} - \frac{1}{4}V_{A})/n} = \frac{2n}{n + 4/h^{2} - 1} = \frac{2n}{n + \frac{4 - h^{2}}{h^{2}}}$$

Some basic QG: variances

X = A + EVar(X) = var(A) + var(E) = V_A + V_E

(no cov. Between A,E)

var(mean) = common variance + specific/n

 X_1 = Mean of n Full Sibs

var(X) =
$$\frac{1}{2}V_A + V_{ce} + \frac{(\frac{1}{2}V_A + V_{te})}{n}$$

Some basic QG covariances

 $\mathbf{X} = \mathbf{A} + \mathbf{E}$

 $\overline{\operatorname{cov}(X_1, A)} = \operatorname{cov}(A, A) + \operatorname{cov}(E, A) = V_A$

 $cov(X_1, X_2) = a_{ij}V_A$ if relatives

$$\operatorname{cov}(X_1, \overline{X}_2) = \frac{1}{n} \operatorname{cov}(X_1, \sum_{i=1}^n X_{2i}) = \frac{1}{n} \sum_{i=1}^n \operatorname{cov}(X_1, X_{2i}) = \operatorname{cov}(X_1, X_{2i})$$

Finding the optimal index weights

Selection Index (multiple regression)

EBV = Index = $b_1X_1 + b_2X_2 + b_3X_3 + \dots + b_nX_n$ Regression of A on X_i X'=[X1, X2, \dots Xn] $\frac{\operatorname{cov}(X, A)}{\operatorname{var}(X)} = \operatorname{var}(X)^{-1}\operatorname{cov}(X, A) = P^{-1}G$

 $P = \operatorname{var}(X)$ G = cov(X, A)

Selection index with more information sources (multiple regression)

X = vector with phenotypes ("P_i values" = sel. criteria) A = True breeding Value

 $\operatorname{var}(\mathbf{X}) = \mathbf{P} = \operatorname{matrix} = \begin{bmatrix} \operatorname{var}(X_1) & \operatorname{cov}(X_1, X_2) \\ \operatorname{cov}(X_2, X_1) & \operatorname{var}(X_2) \end{bmatrix}$

cov(X,A) = G = vector =

$$\begin{bmatrix} \operatorname{cov}(X_1, A) \\ \operatorname{cov}(X_2, A) \end{bmatrix}$$

Opt. weights: $b = P^{-1}G = \text{``cov/var}X$ '' (single trait Sel Index eqn: Pb = G)

Example:	$\mathbf{X}_{1=}$ weight for own phenotype
	X ₂ = mean of n full sibs

	n=3		n=10
h ²	b ₁	b ₂	b ₁ b ₂
0.10	0.09	0.12	0.08 0.32
0.30	0.26	0.26	0.22 0.49
0.50	0.43	0.29	0.38 0.48
0.70	0.62	0.24	0.57 0.36

Own performance more important with high heritability
and smaller amount of family info
Otherwise, family information more important

Accuracy of selection index

 r_{IA} = correlation between Index and A

$$= \frac{\operatorname{cov}(\mathbf{I}, \mathbf{A})}{\sigma_{\mathrm{I}} \sigma_{\mathrm{A}}} = \frac{\sigma_{\mathrm{I}}^{2}}{\sigma_{\mathrm{I}} \sigma_{\mathrm{A}}} = \frac{\sigma_{\mathrm{I}}}{\sigma_{\mathrm{I}} \sigma_{\mathrm{A}}} = \sqrt{(b' P b / V_{\mathrm{A}})}$$

because cov(I,A) = cov(bX,A) = b'cov(X,A)= b'G = b'Pb = b'var(X)b = var(bX)= var(I)

Note: I = EBV = sel. criterion A = BV = Objective $\rightarrow r_{IA} = sqrt(var(EBV) / V_A) = accuracy = correlation$

Summary of this lecture

- Selection Index Theory can be used to work out weights and accuracy for a given set of information about an particular EBV
- Quantitative Genetic Theory and matrices (P, G) are used to work out such index weights (b) and accuracies
- In Genetic Evaluation we use BLUP where this all occurs 'automatically'
- Selection Index Theory still useful to predict what happens
 - Accuracy for a given amount of information
 - Importance of own vs family information for given situations