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In this Chapter we will discuss first the principles of mapping based on two markers
(interval mapping) and then in more detail regression analysis and Maximum Likelihood
methods for QTL mapping. Regression methods are generally much easier to use
(standard software like SAS or ASREML can easily be used), and the method is much
faster computationally. Maximum likelihood is computationally more demanding, and
specific software is needed. For many designs, results are very similar to regression. This
makes regression analysis attractive as it can be used in resampling methods.
Resampling methods are use to determine test statistics for hypothesis testing. In this
Chapter we will discuss bootstrapping and permutation tests.

We will aso discuss QTL mapping with multiple markers (more than 2) and methods to
account for more than one QTL. Accounting for other QTL has been proposed by
including cofactors, or by using composite interval mapping.

There are two further classes of methods that are not extensively discussed in this
chapter. Those are the mixed model methods and Monte Carlo Markov Chain methods.
In both methods, QTLs are modeled either as fixed or as random effects, and additional
random effects can account for polygenic variation. Combined segregation and linkage
anaysisis needed to infer QTL genotype probabilities from marker data. Mixed model
methods are based on the Gametic Relationship Matrix, which will be briefly discussed.

Both methods are useful in ‘complex pedigrees’, typical in animal breeding data
from outbred populations. When line crosses are analysed, or half sib familiesignoring
relationships across families, such methods are less relevant, and they have not been
extensively used in QTL detection studies. In most animal breeding applications,
however, such methods are typically needed in genetic evaluations including QTLS.
We will discuss mixed model methods including QTL effectsin anext chapter.
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Single versus multiple markers

Association between a quantitative trait and genetic markers can be evaluated using
single markers or multiple markers. When using one single marker, it is possible to make
inference about the segregation of a QTL linked tot that marker. However, in the case of
single markersit is not possible to distinguish between size of a QTL effect and its
position (relative to the marker). Also, single marker analyses have less power if the
markers are far apart.

If two (or more) markers are jointly used in an analysis, thereis alot less confounding
between the position and size of QTL effect, and there is more power in detecting aQTL,
even if the markers are far apart. Inference about the QTL effect aswell asthe
recombination rate between QTL and markers (i.e. position of QTL) ispossible. The
recombination rate between markersis usually assumed known.

Therefore mapping of a QTL therefore requires the use of multiple marker genotypesin

the analysis.

Deter mining associations between genetic markersand QTL with two markers

For two markers, the QTL probability given the marker genotype depends on more
recombinations: those are the recombination rates between M1 and QTL (=r1), between
M2 and QTL (=r2) and between M1 and M2 (=r12).

We consider again a half sib design where we know the sires marker genotype for two
markers, the sire is heterozygous for the QTL and we know the marker-QTL phase.
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TABLE 1
Parental genotype M1 Q M2

ml q m2

Possible gametes recombination? Gamete probability

M1 Q M2 no (2-r1)(1-r2)/12
M1 q M2 double: M1-qg, g-M2 rl.r2/2
M1 Q m2 yes. Q-m2 (2-rDr2/2
M1 q m2 yes: M1-q ri(1-r2)/2
ml Q M2 yes: m1-Q r1(1-r2)/2
ml q M2 yes. g-M2 (2-ryr2/2
ml Q m2 double: m1-Q, Q-m2 rl.rz/2
ml q m2 no (1-r1)(1-r2)/2

Assume now also (for ssimplicity) that we know which marker alleles came from the sire.

We can now work out the expected difference between the paternal marker genotype-

groups in the sire’ s progeny:

TABLE 2

Marker alleles QTL dlele frequency Expected mean
obtained from sire obtained from sire of progeny
group

M1M2 Q (1-r1)(1-r2)/2 U+ 0
M1M2 q ri.r2/2 VI

M1m?2 Q (2-rDrz/2 M+ a
M1m2 q ri(1-r2)/2 VI

miM2 Q r1(1-r2)/2 M+ a
miM2 q (2-r1)r2 VI

mlm?2 Q rl.r2/2 M+ a
mim2 q (1-r1)(1-r2)/12 VI

o = average effect of allele subgtitution of Q (over q).

Some tedious algebra would give the following means for the possible paternal marker-

haplotypes in progeny (sum of frequency * mean of group and divide by frequency of

marker haplotype group)
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TABLE 3. Expected means of different marker haplotypes.

Mean of M1M2-group: FA-rA-ruto)+orirzn =y (1. 2 g
1(1-r12) 1-112

Mean of M1m2-group: p(1-rh).r2(p+a)+5ri(l-r2)p — n+ r2-rr2g
3112 r12
Mean of m1M2-group: AA-r2)(u+a)+3(1-rh)r2p n+ M-rr2g
3r12 r12
Mean of m1m2-group: prLr2(p+o) +5(A-r)d-rau — u+ 2 g
1(1-r12) 1-r12

The difference between the M1M2 and m1mz2 haplotypesis now equal to .

[p+ (1_ rir2 )G] _[ o+ rir2 G]= (1_ 2r1r2)(]
-rl2 1-r12 1-r12

and asrlr2 isusually asmall number, this difference is quite close to the actual QTL
alelic effect (a). The coefficient for a in Table 3 in the last column is the probability of
having inherited Q from the sire, conditional on (given the) the paternal marker

haplotype. Thisis shown more explicit in Table 4.

TABLE 4. Probabilities for having inherited the paternal Q-allele of different marker
haplotypes.

Prob(QIM1M2) i0-rya-rz) - @2
1(1-r12 1-r12
Prob(Q|M1m2) ;(@-rhr2 = r2-rir2
3r12 r12
Prob(QIm1M2) Srl-r2) = rl-rir2
2112 ri2
Prob(QIm1m2) w2 - 12
3(1-r12) (1-r12)
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The following Table 5 gives an example of the probabilities of having inherited the Q-
alelein ahaf-sib family, given the marker haplotypes (PQ[MiMj). The distance between
the markersis 40 cM. The QTL location investigated isat 10 cM from M 1. Haldane's
mapping function is used to determine recombination rates based on these distances.
Tables 1, 3 and 4 are used to determine probabilities. Table 3 is used to determine
expected means of each marker type, assuming QTL genotypic means of 10 and 11 for qq
and QQ, respectively. Note that in first instance only the probability of inheriting Q form
the sire (given the observed marker types, i.e. P(QIM1M?2)) isrelevant. However, in order
to predict progeny means, we need to know the alleles contributed by dams, as well asthe
genetic model, e.g. existence of dominance. The dam population is assumed to have a g-

frequency of 1 (comparable with a backcross design)

TABLE 5
Paternal Probability of marker haplotypes Qgmean =10 qqmean =9.5 Mean
Markertype | P(M1IM2) P(M1QM2) P(QM1M2)  prob(Qq) Prob(qq) Expected
M1M2 0.362 0.352 0.972 0.972 0.028 9.986
M1m2 0.138 0.103 0.745 0.745 0.255 9.873
miM2 0.138 0.035 0.255 0.255 0.745 9.627
mim2 0.362 0.010 0.028 0.028 0.972 9.514

The following figure shows the difference between marker haplotype groups in progeny
for asingle marker (M-m) and for two markers (M 1M2-m1m2), for different positions of
the QTL relativeto the M 1.
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Observed difference between marker haplotypes receiverd from
the sire (2 markers 40 cM apart)

1.2

0.8 = Actual QTL effect

0.6 A e M1M2-m1m2
—M1-ml

0.4
0.2

O T T T T T T T T T T
0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4

Map Distance (M1-Q)

The figure shows that the difference between the non-recombinant marker haplotypesis
much less affected by the marker-QTL distance than the M1-m1 difference for the single
markers. Moreover, the map position is now not confounded with the QTL effect. Ina

way, map position and QTL effect have become estimable with two markers.

The example shown here is based on half sib analysis. The interpretation of the genetic
effect estimated depends on the constitution of the dam population, as shown in the
previous chapter. If we want to estimate both aand d, we need a dam population that
contributes both g and Q aleles, and where we can trace the inheritance from the dam. In
other words, we need to identify also segregation from the dam. Choosing the dam
population from a F1-cross of two extreme lines (extreme with respect to the putative
QTL) would be the best choice.

Inbred lines have been used in QTL mapping to avoid uncertainty about the genetic
effects estimated. However, in animal population, complete inbred lines (with marker-
and QTL allelesfixated) are hardly feasible, and possibly less relevant for QTL’sto be
used in practical applications.
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In outbred populations, there isless certainty about the animals' QTL genotypes. Lack of
design usually means that the marker genotypes are frequently not informative about
paternal or maternal origin. In the next chapter, the advantages and disadvantages of
different design will be discussed.

At this stage we can continue that for ‘any’ design, the QTL estimation is based on two

steps

1) What isthe probability that an individual has a certain QTL genotype (give the
observed marker genotypes)
2) What isthe estimated effect of this particular genotype on theindividuals' phenotypes

Thefirst step is much easier in well-defined experiments. The second step can be
guantified either by using the likelihood principle, or by using regression (where the
match is measured in terms of residual sums of sgquares).

We present the principle briefly here, and thereafter we will discussin more detail these
different methods.

Interval mapping

Maximum Likelihood

Theterm ‘interval mapping’ is used for estimating the position of a QTL within two
markers (often indicated as ‘ marker-bracket’). Interval mapping is originally based on the
maximum likelihood but there are also very good approximations possible with ssmple

regression.
Theprincipleis:
1) TheLikelihood can be calculated for a given set of parameters (particularly QTL-

effect and QTL position) given the observed data on phenotypes and marker

genotypes.
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2) The estimates for the parameters are those were the likelihood are highest.

3) The significance can be tested with alikelihood ratio test:

Max _ Likelihood (reduced model)
Max __ Likelihood( full model)

LR= -2In

The reduced model refers to the null-hypothesis, e.g. "thereis no QTL effect"
Us ng the |Og-| ikelihood: LR= -2(| n_Lreduced — In_qu”)
where In_L istheloge of the maximum likelihood.

The evidence for a particular QTL at a particular chromosomal position can be displayed

as alikelihood map, The LR-statistic is plotted against the map position of the QTL.
Lander and Botstein (1989) introduced first the concept of likelihood maps. The proposed
to use the LOD-score as atest statistic. However, the LOD score is equal to a constant
(1/4.61) time the LR test statistic, as shown:

The LOD scorefor aQTL at position cis:

Max _ Likelihood (reduced model) _ LR(c) - LR(c)
Max_ Likelihood( full model,c)  2In10 4.61

LOD(c) = - log,,

The following figure shows a likelihood map for a marker bracket based on simulated
data from one half sib family (backcross) with 300 progeny. The simulated QTL effect
was 0.5 within-family standard deviations. The figure shows the true LR value based on
ML, and the approximate LR (upper line) based on regression analysis.
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LRand approximate LR
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Regression Methods

ANOVA analysis using single marker genotypes.

A marker genotype (or marker-haplotype) represents a fixed effect class.

y=u+MG;+e

The number of marker genotypesis 2 in backcrosses of inbred linesand 3in F2

populations. However, most animal populations are not inbred and could have more

genotypes, which will have less power.

The analysis gives an F statistic, and provides a quick and simple method to detect which

markers are associated with aQTL.
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ANOVA analysis using multiple marker genotypes.

Each marker genotype (or marker-haplotype) represents a fixed effects class.

y= H+MGy+ MGy +.......... + MG,

Thisisamultiple regression model, and markers can drop out of the model if they are not
significant. The set of markersthat is significant in the final analysis point to the
existence of asignificant QTL effect (or more, depending how far the markers are apart).
The analysis does not take into account any recombination rates between markers, or
between QTL and markers. In that sense it is comparable with regression on single
marker genotype. The multiple marker method is more powerful than single marker
analysis, and when the markers are well spread over the genome, it is better able to
distinguish the position of the QTL. Normally, after detection of such alocation, analysis

with interval mapping would be recommended.

Regression on OTL probability, conditional on marker hapl otypes.

For a given marker genotype, or marker haplotype that was inherited from the sire, we
can calculate the probability for having inherited the Q or the g allele. It seems therefore
natural to regress phenotype on Q-probability. We illustrate the method for two marker,
which is therefore like interval mapping.

The mode is

y=p+oax+e
where y isthe observed phenotype
x isthe probability of having inherited a paterna Q,

given the observed marker genotypes, and
marker/QTL positions: P(Qmgl, mg2, r1,r12)
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The coefficient for x are obtained for agiven QTL position asin Table 4. Note that
different positions give 4 different x values for the 4 haplotypes. For aeach QTL
position, the residual sums of squares can be determined, and the estimate of the QTL

position is there where SSE is minimum. Thisis interval mapping.

For each recorded animal, we can then give a predicted phenotype with this“QTL-
model” which is equal to
¥ =p+ax

where the “hats’ refer to estimated (predicted) values.

A modé ignoring a QTL would predict each observation as

<>

11
-
o

where (1, istypicaly the general progeny mean
Now let the total sum of squares (SST) be the sum (over animals) of (¥ —{i,)°

and let the residual sum of squares (SSE) be the sum (over animals) of (¥, —fi—ax,)?

Each map position will yield an SSE and the position with the lowest SSE is the most
likely position.

A test statistic for this method is for an experiment with n observationsis

LR = nIn(ﬁ)
SSE
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where n is equal to the number of observations. The LR stands for “Likelihood Ratio”, as
thistest statistic is approximately similar to the LR from maximum likelihood.

Haley and Knott (1992) have shown that this similarity. If there are more fixed effectsin
the model, the test statistic is calculated as

LR = an)

full

Which isratio of the residual sums of squaresin amodel with the QTL ("full’) and a
model without it (‘reduced’).

The information about a QTL is only dependent on the flanking markers. If the QTL lays
outside the bracket, it will only depend the nearest marker. Likelihood maps can be
constructed for neighbouring marker brackets and they should exactly match up at each
marker, and a map of multiple intervals M1-M2-M3....-Mk is smooth.
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Data on 8 individuals with paternal marker haplotypes given. The probabilities are
derived for different positions (dM1-Q is distance between marker 1 and QTL), with
further the same assumptions as in this chapter (see Table 5).
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Haley-Knott regression

Haley and Knott (1992) have proposed a slight reparameterization from the previous
model, but the principleis similar. Rather than dealing with marker haplotypes, they
present a more general model where QTL genotypes are dependent on marker genotypes.
The probability of carrying a certain QTL genotype depends on the marker genotypes and
the design

y=u+taxg+px,+e

where y isthe observed phenotype
x1 = P(QQM;) — P(qg|M)
X2 = P(Qq[M;)

X1 and X, are probabilities for QTL genotypes conditional the flanking marker genotypes.
The regression coefficients a and [3 represent the difference between the homozygote
QTL genotypes, and the QTL dominance effect, respectively.
Haley and Knott are well known for their proposed regression model, but an important
result from their paper was the similarity that was shown with maximum likelihood. They
proposed to use the following test statistic, indicated as * approximate Likelihood ratio
test’:

LR = n|n(%) =-n.In(1-r?

full
Which isration of the residual sums of squaresin amode with the QTL ("full’) and a

model without it (‘ reduced’). The term r? is the usual R-squared, used for the percentage
of variance explained by the model (only applicableif there are no other fixed effects).

57



Methods for QTL analysis

Regression of phenotype on marker type

The previous two regression models proposed regressing phenotype on Q-probability,
conditional on marker type. Asthis probability depends on QTL position, relative to
markers, interval mapping can be used. A regression analysisis needed for all possible

positions (usually in 1 cM steps) within the marker bracket.

Whittaker et al. (1996) have shown that direct regression of phenotype on marker types,

provides the same information about location and QTL-effect without having to step to

al positions on the interval.

For interval mappingweused: y=pu+a.x +e [1]

where x = P(Q|mgl, mg2, r1,r12)

Whittaker et al. (1996) proposed their model for a backcross or F2 population:
Y=U+O0AX +tOpXgte

Now A = P(QIX. = M1IM1, Xg =m2m2) and p = P(QX. = m1m1, Xg = M2M?2).

Theterm a isthe effect of Q. The terms x. and xg refer to left and right marker, and have

values—1, 0 and 1 for mym;, Mim; and M;M;, respectively. From the regression

coefficients: 31 = oA, and 32 = ap, it was shown (Whittaker et a., 1996) that location and

QTL effect can be estimated:

location (recombination between M1 and QTL)

r1:0.5[1—\/1— 4501~ 6) }
B+ B(1-26)
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and the estimate of the QTL effect:

a:\/[[i+(1-26’),@][[@+(1—26)§
1-26

where 8 = r1+r2(1-2rl). Hence asingle analysis can give the same result as a complete
interval mapping. Note that the assumption is here that there areno QTL’sin the

neighboring marker-brackets.

Maximum Likelihood estimation

In these notes, we will not discuss the detail of a maximum likelihood analysis (for
interested readers are referred to Lynch and Walsh (1998). Only the principleis given
here.

We have a probability of observing certain data (y) for a given set of parameters (6):

F(y:) = P(yl6)

Thisfunction F isindicated as probability density function (pdf). For example, if we take
normally distributed observations, and the simplest model, with a mean (1) and standard
deviation (o) the pdf looks like:

Ly-n)?

iy, ) = jz—ne 02 2

Thelikelihood is the probability of certain parameters, given the observed data: L(0] ).

We can use the same function for this, e.g.
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_1y—yn2
S(y=4)
2

e ag

L. oly) =— jﬁ

Thetotal likelihood of dataset y is calculated as the product of all likelihoods for each
observation.

L(w, aly) = Mi L(w oly)

Asthese likelihoods can become very small numbers, is better to work with the
LogLikelihood

LogL(u, aly) = % LogL(, aly;)

Also for an alternative model, e.g. with a QTL effect, we may have different means.

A new set of parametersisthen (L, 1o, O, and o) and we can write the likelihood.

1 Ly-m)* 1 -Ly-m,)*
L(uy, Uz, Olyi) = P(uy). e 7 +P().——e 3
(M1, M2, Olyi) = P(H) oJon (H2) P [3]

Typically, in QTL analysis, we are not sure about QTL genotype, i.e. whether an
observation belongs to the Q-mean or to the g-mean. The likelihood is calculated as the

sum of the two possibilities, each weighted with its probability (=P(l,)).

The distribution of the data under the interval mapping model is generally assumed to
follow anormal mixture distribution. For example, there are two normal distributions,
each of whichisfor aQTL paternal haplotype. The iterative expectation-maximization

(EM) agorithm is broadly used to cal cul ate the maximum-likelihood estimates (MLE) of
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the normal mixture model. The ML mapping model used here for locating aQTL (Q) on
an interval flanked by markersi andi + 1 (M; and M.;) (assuming the order M;QM;.1)
can be written as:

yj=u+bx; +g 1=1,2,...,n
where

y; = thetrait value of the jth individual

K = mean

b = the effect of the putative QTL

_J1 if theQisinherited
"7 1o if theqisinherited

§ ~ N(0,09)
Xj, which is unobserved, can take different values with probabilities depending on the
genotype of the flanking markers (M;, Mi.1) of the jth individual and the testing position.
Here, the QTL genotype for an individual isusually missing value, but its distribution can
be inferred from its flanking marker genotypes. Since the x; could be 1 or O, the
likelihood for every position is then anormal mixture distribution with mixing
proportions equivalent to the probabilities of having inherited paternal alleles Q and g
from a heterozygous (Qq) sire, p; and 1 - p;. Asin [3] but now for nindividualsina

population, the likelihood function of the model is:

n - Uu-b =
(b, 0?) = ﬂ{pj Pty ra-p)aE

=

e%/2 jsthe standard normal density function. It can be seen that

where ¢ (2) =

1
O\ 21T

the likelihood depends on p;, which is determined by the QTL position and the marker
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genotypes, as well as phenotypic data (y;). The maximum likelihood estimates of the
parameters b, pand o 2 are derived based on the EM agorithm, that is by iterating the
following equations and beginning with the random starting values of each parameter.

The EM approach proceeds as follows:

(1) E-step: we write down expected values for genotype probabilities (the ‘ missing

values'), given current estimates of the parameters:

y. = u® —pt
0 p,w( ] O_(k) )
Pl = V™ b - (5.1)
pj (0( U(k) )+(1_ p]) ﬂw)

where k refersto iteration round and P*’ can be called the posterior probability of x; = 1.

(2) M-step: estimate parameters given these probabilities

kD = Z(yj _:u(k))Pj(k) /Z pj(k) (52)
j=1 =L
L = Z(yi _ Pj(k)b(kﬂ))/n (5.3)
j=1
+1)2 1S z
ot =13 ] (y, -y ~PD ] 54
j=1

From the above four equations, it can be seen that each parameter depends on estimates

of other parameters. Therefore, in each iteration, the algorithm consists of one E-step,
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equation (5.1), and three M-steps, equations (5.2), (5.3) and (5.4). This processis iterated

until convergence of estimates.

A test of significance is obtained by comparing the maximum likelihood with the
likelihood of a model with the tested parameter omitted (reduced model).

Max _ Likelihood (reduced model)
Max _ Likelihood ( full model)

LR= -2In

The reduced model refers to the null-hypothesis, e.g. "thereisno QTL effect”

Using the log-likelihood: LR=-2.(In_L;—In_L) where L stands for LogLikelihood.

Example of simple QTL mapping with maximum likelihood

In QTL analysis the data consists not only of phenotypic observations of performance,
but also of marker genotypes.

Using the example as in chapter 7, where we looked at a half sib family with known
paternal marker haplotypes, we could calcul ate the probability of having inherited the
paternal QTRL alleles for each of the four marker haplotypes (and given the

recombination fractions, i.e. for agiven QTL position)

If the dam alleles are fixed there are only two possible QTL genotypes, hence we can
calculate the likelihood for each observation asin [3]. If the dam alleles are not fixed, we
would have to sum over all three possibilities.

In asimple fixed effects model, the ML estimate of the fixed effect parametersis equal to
the LS estimate of the fixed effects. Hence for agiven QTL positions we can calculate

and a from aregression asin [1] and subsequently calculate the likelihood asin [3].
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The following Table shows alikelihood calculation of the example asin Chapter 7, for
the QTL position M1-Q =0.1

Phenotype Marker Prob(Q|markers) Expected
haplotye phenotype
(H1-model) LogLO LogL
50.98 M1M2 0.9718 50.43 -1.18884 -0.81727
49.98 M1M2 0.9718 50.43 -0.4575 -0.65658
50.75 M1m2 0.7451 50.34 -0.73859 -0.59655
49.75 M1m2 0.7451 50.34 -0.73859 -0.91164
50.75 miM2 0.2549 50.16 -0.73859 -0.91152
49.75 miM2 0.2549 50.16 -0.73859 -0.59663
50.52 mim2 0.0282 50.07 -0.4575 -0.65648
49.52 milm2 0.0282 50.07 -1.18884 -0.81739
sum -6.24705 -5.96407

Model with no QTL:

The general mean = p = 50.25.

SST = (sum of deviations from general mean) = 2.21 giving avariance oy> = 0.316

The likelihood is cal culated according to [2] using Ho and 6>
The sum of the Log Likelihood over the whole data for the HO-model = -6.247

Model with a QTL
Regression analysis gave solutions 1 = 50.057 and a = 0.386.

SSE = (sum of deviations from expected phenotype) = 2.05 giving a variance ¢ = 0.292
The likelihood is calculated according to [3] using o and the two means are

Ho=H+a=50443 and pg=p =50.057 and the weights are P(Q) and 1-P(Q),

where P(Q) is given for each individual in the third column of the Table.
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The sum of the Log Likelihood over the whole data for the HO-model =  -5.964

The LR-vaue=-2(L0—-L) =-2(-6.247 + 5.964) = 0.57.
(Note: thisis NOT the Maximum Likelihood, as we have used the residual variance as (over) estimated by

regression).

The approximate LR value from regression was

appr.LR = nIn(M) = 8.In(2.21/2.05) = 0.63.

full

Multi-family analysis
With more familiesin an outbred population, the phase maybe different in different
families, or the sires may be homozygote for the QTL. The QTL analysisin multi-family

was performed according the following model [Kerr, 2000]:

Vi = Wi + (Za1ij + Zazojj) b — (Za12jj + Z121ij)b + €

where yj; is the corrected phenotype of the jth progeny of theith sire, ; is the mean of the
ith sire family, b is the magnitude of the effect of QTL allele inherited from the sire, and
g; is the random error term. Compared with the b in previous section, b in this model is
only one half of the previous b because it is considered that the QTL effect is +b if the
progeny inherited the Q alele and the QTL effect is -b if the progeny inherited the g
alele in this section. (IN the previous section the QTL effect was either O if the progeny
inherited the g alele or b if it inherited the b alele). The variables Zi11j, Z122j; €tC. are
indicator variables taking the value 1 or 0 with the probability depending on the unknown

probability that sire is heterozygous (h), the probability that the sire has one of two
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equaly likely possible linkage phases, the genotypes of the flanking markers and the
position being tested, where

Z,; =1, if theith sireis heterozygous

Z,; =1, if theith sireis homozygous

Zi11; = 1, if the ith sire is heterozygous, has phase 1 and its jth progeny has inherited the Q allele
Z1125 = 1, if the ith sire is heterozygous, has phase 1 and its jth progeny has inherited g alele
Z1nj; = 1, if theith sire is heterozygous, has phase 2 and its jth progeny has inherited the g allele

Zixji = 1, if theith sire is heterozygous, has phase 2 and its jth progeny has inherited the Q alele

When one progeny has been assumed to be one type of Zi11j, Z112jj, Z121,j and Z122j5, this

type equals 1 and the other three types are al 0.

Denoting al | by the vector [, the number of sires by ns and the number of progeny in

each sire family by n;, the likelihood function for this model is [Knott, 1996 #43]:

-~ —b -~ +b
-5h|_|lj1i=1|: pij“{y” 5 J"'(l_ P; )‘{ e 5 : II
. X y; — 4 +b Yy — M —Db
L (h, H, b, o ) - D +5h|—| j|=1|: plj‘{Tj + (1_ pij )‘{Tj}

where p; is the specific prior probabilities that the progeny has inherited the Q alele,

conditional on the genotypes of flanking markersi and i + 1 and the position being tested,
1- p; isthe prior probability that the progeny has inherited the q dlele, ¢ (2) is the

probability density for the normal distribution, and h is the probability if sire is
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heterozygous. Solutions again obtain using an EM algorithm (see Kerr 2000 or Song

2003).

Comparison of likelihood and regression procedures

The difference between maximum likelihood and regression is that the last method
assumes normality within a marker group, i.e. there is a homogeneous variance within a
marker group (errors only due to €). Maximum likelihood accounts for the fact that
within amarker group, some animals have obtained a g and some have obtained a Q,
hence there are actually two distributions. The fact that the test statistics are practically
very similar shows that accounting for this bimodality within marker genotypesis not
very important. Most of the variation is explained from the differences between the
marker genotypes. Xu (1995) shows that the regression method is somewhat biased: it
overestimates the residual variance, and therefore tends to give lower values for the
approximate LR test. Thisbiasis larger if the difference between Q and q is larger, and
when there isless certainty about QTL-allele inherited. The largest differences between
the two methods will be found in the middle of a marker bracket, when there is most
uncertainty about which QTL allele was inherited.

Xu’ssuggest correction is

4
Us_corrected = Js - aZZ pi (1_ p|)

i=1

where p; is the probability of having inherited Q in marker genotype classi and aisthe
regression coefficient on Q-probability in the regression model. Generadly, this
adjustment has only a small effect, unlessthe QTL effect is very large and markers are

far from the QTL position

It should be noted that ML procedures depend on the distribution of the phenotypes.

Regression analysis is much more robust against deviation from normal distributions.
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On the other hand, in outbred populations, ML is better able to use al possible
relationships to infer upon marker- and QTL probabilities. With no markers, ML analysis
would still boil down to a segregation analysis, whereas regression methods would not be
able to make any inferences at all. However, regression methods combined with a
genotype-probability-type a gorithm could be very competitive to aML analysis (see

next).

The Gametic Relationship Matrix approach

This can be the most complete approach containing all information on pedigree in an
outbred population. In this approach, we first set up a GRM; a symmetrical matrix that
contains a row and column for each gametic haplotype (2 per animal, one from each
parent) in the population of animals that we have. Such a matrix is specific to the
chromosomal region of current interest. Each element in this matrix is then the
probability of identity-by-descent for the representations of this region (one
representation per gamete). Here are ssimple examples of this “Gametic Relationship
Matrix” (GRM). Notice that without marker information we must resort to ssimple
segregation probabilities — however, marker information allows us to be more ‘surgical’
in alocating identity-by-descent probabilities:
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The Gametic Relationship Matrix

D ad Mum D ad Mum
A B A C
1 2 3 4 1 2 3 4
Prog. Prog
A C
5 6 5 6
Dad Mum Prog. Dad Mum Prog.
Ste| 1 23 4|5 6 Stel| 1 213 415 6
Dad 1 1 0|0 O 5 0 Dad 1 1 0|0 O]9 O
2 0O 1[0 o0 5 0 2 0O 110 o0fa o
Mum [ 3 0O O[1 O0O|0 5 Mum | 3 0O o1 o0 1
4 0O 0[O 110 5 4 0O 0]l]0O0O 110 9
Prog| 5 |5 5|0 0|1 o0 Prog| 5 |19 1|0 0|1 O
6 0O o5 510 1 6 0O 0l41 90 1

Figure. Gametic relationship matrices (GRM) for a QTL are of dimension 6 sites x 6 sites
for the simple 3-animal pedigree shown. Elements of the GRM are probability of identity
by descent of the alleles at the prevailing pair of sites. In the GRM to the left, no marker
information is available, and, for example, probability of identity by descent between
sites4 and 6 is 0.5, as site 6 (maternal) could have inherited from sites 3 or 4 with equal
probability. In the GRM to the right, a marker with alleles A, B and C is available, and
for example, probability of identity by descent between sites 4 and 6 is 1, for the marker
locus. If the QTL is linked with a recombination fraction of 0.1, then the probability of
identity by descent between sites 4 and 6 is 0.9, for the QTL, with a 0.1 probability (in the
event of recombination) for sites 3 and 6. Special attention is required where there is
ambiguity of marker allele inheritance (Wang et al., 1995).

With a good data set, the GRM gives us a lot of information for mapping. You can
visualise regions of identity-by-descent in the following diagram. In the diagram, the top-
left founder animal has QTL allele Q in its paternally inherited region of haplotype
(coloured red). For all its descendants, the GRM gives us probabilities that the have
inherited the same bit of DNA, holding that Q allele. We can then ssimple regress their
phenotypes on these probabilities to get an estimate of the effect of Q on phenotype.
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The strategy is to construct a GRM (or a subset of it) for each location in the genome, and
test the goodness of fit of the resulting regression. We end up with something like this

for each chromosome:
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Precision of mapping and hypothesistesting

Maximum likelihood estimates are approximately normally distributed for large sample
sizes and confidence intervals can be based don the sampling variances. However, these
are often not so easy to obtain.

Approximate 95% confidence intervals for QTL position can be constructed using the
‘one-LOD rule' (Lander and Botstein, 1989). All QTL with a LOD score value less than
1 from the maximum fall within this confidence interval. Note that 1 LOD score
corresponds to a LR value of 4.61, which has a significance value of 4% for the X% -

distribution.

LR tests have a xq-distribution, where df refers to the degrees of freedom of the tested
parameter (i.e. the difference in df between the full model and the restricted model!).

In QTL analysis, this statistic provides only an approximate test, as the null-hypothesis
involves a non-mixture distribution whereas the QTL model involves a mixture
distribution.

Also regression analysis provide only approximate test statistics, as they assume normal
distributed errors within marker type, whereas the distribution is really a mixture of two
(or 3).

Simulation studies have been used to examine distributions of test statistics, or to
determine threshold values. However, such studies rely on the true data have the same
distribution as the simulated data.

Permutation testing

Churchill and Doerge (1994) proposed permutation testing to obtain empirical
distributions for test statistics. In a permutation test, the data is randomly shuffled over
the marker data. Analysis of the permutated data provides atest statistic, asit is the result
of the null-hypothesis (marker not associated with QTL).

The number of permutations required is about 10,000 for a reasonabl e approximation of
threshold levels of 1% (Churchill and Doerge, 1994). The important property of this
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method is that it does not depend on the distribution of the data. A permutation test is
typically used to determine a threshold value for significance testing of the existence of a
QTL effect.

Bootstrapping

Bootstrapping, described by Visscher et al., (1996) is aresampling procedure. From the
original dataset, N individual observation are drawn with replacement. An observation is
a phenotype and its marker type, hence unlike in permutation testing, the observed
combinations remain together. Note that some observation may appear twice in the
bootstrap sample, whereas other may not appear at a. Visscher et a (1996) show that
confidence are approximated very well with this method, with only 200 bootstrap
samples used. A bootstrap method is typically used to determine an empirical confidence
interval for the QTL location, assuming that the QTL effect exists.

Accounting for multipletesting

In QTL analysis, usually many markers are tested, often for multiple traits and in multiple
families. Therisk of false positivesis very high with so many tests. If a 5% significance
level would be used, we would expect 5% false positives! Therefore, a more stringent

significance level is usually applied for gnome wide QTL detection, e.g. 0.1%.

In genera (quoted from Lynch and Walsh, 1998):
If nindependent tests with significance level a are conducted, the probability that at |east

onetest isfalse positiveis y=1—(1- a)".

25 tests with a significance level of 1% would give a probability of 22% to find false

positives. It isnearly onefor afew hundred tests.

A more stringent level is required (known as the Bonferroni correction):

a=1-(1-y)"=yn.
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Hence, for 200 tests we would need a significance level of 0.05/200 = 0.00025 to have a
chance of false positives of about 5%. Usually, asignificance level of around 0.1% is
applied.

However, test statistics from common analysis are usually not valid. Empirical threshold
values obtained by permutation testing are more reliable. Permutation testing can also be
used to obtain genome-wide significance levels, by simply repeating the procedure across

al markers.
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Methods for detecting multiple interacting QTL

Julius van der Werf and Brian Kinghorn

Introduction

In the last lecture you found out about regression and maximum likelihood methods for
detecting QTL. The extension to cater for multiple interacting QTL is best illustrated on

the basis of analysis by regression.

The strategy is to construct a GRM (or a subset of it) for each location in the genome, and
test the goodness of fit of the resulting regression. We end up with something like this

for each chromosome:

Accounting for additional QTLs

In the examples discussed, we looked at detecting asingle QTL in amarker bracket.
Now, if there other QTL linked to the markers used in the analysis, we would tend to
estimate the joint effect of two QTL’s, and we would not be able to distinguish between
one or multiple QTL. Moreover, the inference we would made from analysis regarding
size of QTL effect and QTL position would both be biased. We may observe two peaks
in alikelihood map, which would be an indication of the existence of two QTL, but both
positions would be biased. Besides avoiding bias, another reason for accounting for
additional QTL effectsisto reduce residual variance, giving more power to an analysis.
Thiswould also hold for additional QTL on other chromosomes (unlinked).

A few approached have been proposed to avoid effects of additional linked QTL.
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Multiple regression on marker genotypes,

The effect of a QTL on one marker is corrected for possible effects of linked QTL-
effects. The effects of the linked QTL are taken away by effect by fitting markers close to
these QTL. A simple regression method that considers all markers has been proposed by
Kearsey and Hyne (1994).They propose to plot the difference between marker types, i.e.
one difference for each marker locus. This is described in more detail by Lynch and
Walsh (1998, p. 461), who refer to this method as marker-difference regression.

Interval mapping with marker co-factors (composite interval mapping)

Jansen (1993) proposed an interval mapping approach where additional markers were
included in the model as cofactors. Such an additiona QTL (say QTL2) can be
accounted for if there is information about additional markers (outside the bracket) that
arelinked to QTL2. Thisanaysisis aso referred to as composite interval mapping (CIM)
(Zeng, 1994). Regression is on the additional marker genotypes are, hence, additional
QTL are accounted for as if they were at the marker locus.

y=u+ p(QTL1 given marker bracket M1IM2) + markersnear QTL2 [9]

Severa authors have shown that composite interval mapping gives a large increase in
power, and much more precision in estimating QTL position.

As we discussed earlier in this chapter, Whittaker et al (1996) found that the regression
coefficient for two adjacent markers contain all information about position and effect of a
QTL between those markers. If the QTL is isolated, i.e. there are no QTL’s in the
adjacent brackets, than these regression coefficients can not be biased by other QTLs
outside the bracket. However, no distinction can be made between on or more QTL

within the bracket. hence, the position estimate within a marker bracket is only unbiased
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if there is only one QTL. If there are more QTL within the bracket, we can not estimate

their positions.

rather than accounting for more QTL as in [5] we can also account for them with the
following model:
y =p(QTLL M1IM2) + p(QTL2| other markers near QTL2) [9]

hence this refers to a multiple interval mapping procedure (Kao et al., 1999).
Some problems here can be that 1) not al markers are informative, especialy not in
outbred populations 2) it is hard to search for the best fitting model (set of positions) as

there are many combinations possible with multiple QTL.

Detecting multipleinteracting QTL

In Composite Interval Mapping, once we are happy about the most likely position and
effect of aQTL, we fix that in the analysis — we correct al the animal phenotypes for the
most likely impact of that QTL on their performance — and then repeat the process to ook
for another QTL.

This has two problems:

» The estimated position of the first QTL can be influenced by the second QTL, and
vice-versa.  This is especialy dangerous for linked QTL. A method to
simultaneously locate the two QTL is preferable.

» Lifeiscomplex —and that means that genes (or gene products) interact with each
other to produce the organisms that we al are. The value of a particular gene
variant will differ between genetic backgrounds. In some cases it will be the
weak link to achieving high merit, and in others it will not. This means that we
should ideally look for interacting sets of genes. Otherwise we could miss some

important genes — and opportunities to exploit them.

77



Methods for QTL analysis

A more genera approach is proposed by Carlborg et a. (2000).

We can nominate two separate positions in the genome as candidate locations for two
QTL. We can then construct a GRM for each position, and carry out a 2-locus
regression, as outlined below, fitting interaction effects between the two loci, as well as

additive and dominance effects within each locus.

How can we find the best fitting two positions? Carlborg et a. (2000).demonstrate an
approach that works efficiently, using a genetic algorithm The genetic agorithm (GA)
works by “breeding” the best solution to the prevailing mathematical problem. In this
case, the “DNA” that the GA uses is ssimply the candidate positions for the two (or more)
QTL. Each of these is a candidate solution to the problem of QTL locations. Each
candidate solution competes to become a “parent” in the next generation. They compete
on a criterion that is simply the goodness of fit of these positions to the phenotypic data

and pedigree on hand.

The successful “parent” solutions then combine in some way — exchanging information,

and mutate to some extent, to generate a new generation of candidate solutions.

Model for fitting interacting QTL

Here is a simple one-locus model of genetic effects, similar to that found in all textsin
thisarea. Il, i and ii are the genotype values for combinations of the two aleles| and i, i

isagenera mean, A isthe additive affect and D; the dominance effect at locusi.

I U+ A
li |=| u+D,

i) (u-A
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We can now expand this to cater for effects at two loci. The classical statistical approach
(eg. Jana1971) istypified as follows:

033 g Njj) (U+A+A +AA pu+A+D +AD, HU+A-A -AA
idd 1iJ lijj|=|u+D+A +AD, u+D +D +DD, u+D -A -AD,
iid0 ig iiji) (4-A+A-AA H-A+D -AD, HU-A-A +AA

The number of parameters to handle has increased from three (¢, Ai and D;) to nine (g,
A, A, Di, Dj, plus interaction terms AA;j, ADjj, AD;i, and DD;;). Notice that each locus
here has two alleles.

More detail is here extracted from Carlborg et al. (2000):

The objective function used was the residual sum of squared errors from a weighted |east
squares approach to QTL mapping. The method is the extension of the method of Jansen
(1992) to the two-loci linear model G = m+Al +A2+D1 +D2 +AA12 +AD12 +AD21
+DD22 as indicated by the author. The parameters of the model will be explained below.
Markers have not been used as cofactors and successive iterations in the EM algorithm
have been removed to increase the computational efficiency during the evaluation
procedure. The modifications needed to the single QTL mapping procedure described by
Jansen and Stam (1994) when implementing the two QTL model included duplication of
each individual nine times (instead of three times i.e. once for every possible two-QTL
genotype) and the use of an expanded design matrix (X). The design matrix for the two-
locus linear model has been described by Jana (1971). The weight for each observation
was taken to be the product of the conditiona probabilities of the single QTL-genotypes
given the markers (Haley and Knott 1992) at each of the two fitted QTL. The estimates of
the model parameters can be found as:

B= (X TWX) tXTwy
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0” = (UN)(Y - X B)T W(Y - X B)

where Y is the complete data vector, X is the design matrix for the complete data, W is
the diagonal matrix of weights, B is the vector of the regression parameters, o is the

normal variance and N is the number of individuals (Jansen and Stam 1994).

The residual sums of squared errors can then be calculated as:

SSE = (Y - X B)T W(Y - X B)

The method described above can easily be extended to take account of background QTL
in the analysis. Two extra ga-genes are added to the genetic agorithm and two extra
columns are added to the X matrix for each background QTL. The extra ga-genes
represent the chromosomal location for the QTL and the columns in the design matrix are
to contain the QTL indicator variables a and d (Haley and Knott 1992), for a QTL at the
location given by the ga-genes. The rest of the evaluation procedure is the same as
before. We have evaluated the increase in computational demand for a simultaneous
search for more than two QTL using this method, but have not investigated any other

properties. “

Some results

There are two advantages in this approach:

» The genetic algorithm gives a fast search, saving much computer time. It
increases the computational demand by a factor of 3 to 5 when compared to
the conditional search (Carlborg et a. 2000). The improvement in
computational efficiency of the GA as compared to an exhaustive enumerative

search (looking at all pairs of locations in a genome size of 2,000 cM using a
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resolution of 1 cM) was by a factor 133 for two QTL. An expansion of the
search to additional dimensions by also searching for background QTL
simultaneously leads to further computational advantages for the GA based
search. Improvements are in the order of 65,000 for three QTL and 1.7 x 10 7
for four smultaneously fitted QTL.

As Carlborg et al. (2000) report, the results from the simulation study with 18
QTL (Figure below) showed that the genetic algorithm based search had
higher relative efficiency to detect the simulated pair of epistaticaly
interacting QTL than the conditional search (ie. composite mapping approach,
as described above) for al epistatic models tested. The genetic algorithm had
arelative efficiency of 100% for all epistatic models except for the duplicate.
The conditional search had between 86 and 96% relative efficiency for the
dominant, recessive and inhibitory epistatic models and 100% relative
efficiency for the complementary model. The difference in relative efficiency
for the search methods was very large for the duplicate epistatic model, where
the conditional search only had arelative efficiency of 21%, while the genetic
algorithm based search had a relative efficiency of 93% (this could grow to
100% with better tuning of the GA parameters). In the ssmulation where two
interacting QTL explained all genetic variation, both methods had a relative
efficiency of 100%.
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As Carlborg et a. note: “ The genetic algorithm is a general tool to search large parameter
spaces and could be of use in many other areas in QTL mapping. In this study we have
used a genetic algorithm in the search for two interacting QTL in a cross between inbred
lines, but the method can also be used for analyses of crosses between outbred lines and
in searches for more than two QTL. For analyses of outbred lines, the genetic algorithm
could also be used when testing for QTL segregation within the founder lines. Thiswould
be implemented by using a genetic agorithm to group the haplotypes from the founders
in alelic groups and in this way obtain the most likely allelic constitution for the
founders and other individuals in the pedigree. This results in greater detection power
because of more extreme probabilities of identity-by-descent of chromosomal regions

between phenotyped individuals and each founder.*
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Multiple trait mapping of QTL

Jiang and Zeng (1995) have proposed a multiple trait version of the composite interval
mapping. Their method is based on maximum likelihood, and requires special programs
for analysis. The authors should considerable increase in power when using information

from two correlated traits.

Most QTL detection studies comprise phenotypic data on multiple traits. Joint use of
data from multipletraitsin QTL analysis has two advantages: increased power and

testing of models regarding the genetic correlation between two traits.

Increased power of QTL detection

Multiple traits that are correlated can add information to each other. To some extent, two
measurements on correl ated
traits are somewhat like

J12
repeated measurements.

Therefore, information from -
correlated traits can reduce the

effect of error variance,

therefore making it easier

(more powerful) to detect

QTL. Not only the power of

QTL detection isincreased,

also the precision of the QTL

map position is better.

Illustration of increased power from using joint analysis of two traits (J12) over single trait analysis (S1
and 2)
Jiang and Zheng, 1995

83



Methods for QTL analysis

Jiang and Zeng (1995) also discussed the increased power from multiple trait analysesin
relation to the correlation structure.
In summary:
1. If the correlation between the traits (here: correlation between residua effects,
this could be the sum of residual and polygenic effects) is zero, the joint test
statistic is approximately the sum of the test statistics for the single traits

LR =LRg; + LRy if correlation=0

2. If the QTL isonly affecting one of the two traits, say a, =0, then ajoint analysis
can increase the test statistic of detecting that trait, depending on the correlation
(r) between the two traits.

LR] = LRS]_/(l-r)Z > LRy

3. Thejoint test statistic is equal or greater than the maximum of the single trait
statistics.

LR = maximum[LRs;,L Rsy]

4. ra,0, <0 (i.eranda; a, have different signs)

LR, > LRy + LRs

Thisisthe most favourable situation for using multiple traits analysis.



Methods for QTL analysis

Testing for linked QTL vspleiotropic QTL

When two QTL are found in the same region, when using single trait analysis, the
guestion arises whether these are actually the same genes affecting both traits, or whether

these are two separate QTL.

Unravelling this difference alows to better understand the nature of a genetic correlation
between two traits. Thiswould provide information concerning the possibility to break a
unfavourable genetic correlation between two characters (in the case of linkage) or

whether thisisimpossible (in the case of pleiotropism).
The test can be carried out with Ho: position 1 = position 2

Hi: position 1 # position 2

Also other genetic models could be compared and tested (depending on design)
- Existence of epistasis (see Chapter 10)
- QTLseffecting one trait only vs effect on both traits

Maximum likelihood might be a bit laborious for multiple trait analyses, especially when

comparing arange of genetic models.

Multipletrait analysisusing regression

Moser (2000) has proposed a multiple trait regression approach and showed that again
regression isvery similar to maximum likelihood methods (at least in designed
experiments).

Asinsingletrait analysis, the approximate LR = n In( SSE equced / SSEfuir )

Moser proposes to use for amultiple trait analysis
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LR=nIn( |VEreduced / [VEtul )

i.e. rather than the sum of squares of errors of asingletrait analysis, he used the
determinant of the matrix with residual sum of squares and sum of cross products of
errors for two traits.
The advantage of the ssmple multiple trait regression method is that

1) permutation tests are feasible

2) anumber of genetic models can bet tested and compared

Moser (2000) used a genetic algorithm to efficiently find the most likely genetic model (as described in the previous chapter).

Multipletrait analysisusing logistic regression

Henshall and Goddard (1999) proposed to use logistic regression for multiple trait QTL

mapping. In fact, this method is aso very useful for singletrait analysis.

Logistic regression is used for traits where the response variable has a binomial
distribution. Henshall and Goddard (1999) regressed, within half sib families, QTL
genotype on phenotype. The QTL genotype refers to which QTL allele was received from
the heterozygous sire (either Q or ). Thisisa0/1 response with a probability, hence
binomially distributed. Hence, rather than comparing phenotypic means for different
marker genotype classes, they compared marker genotype classes for different

phenotypes.

The main advantages of this method:

1) Itismuch simpler than maximum likelihood and standard software (like SAS)
can be used, even for multi trait analyses. Maximum likelihood methods
would be much more complex, as all data that was used in selection would
have to be included in the analysis. Logistic regression however, isnearly

equivalent than ML.
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Example: analysis of thetraits Y and Z would requirein SAS

proc | ogistic;
nodel Qn =Y Z

run;

The variable Q isthe marker genotype (0 or 1) and n is the number of

trials for each observation (=1)

2) The phenotypic observations can be subject to selection (as regression is not
affected by regression on the ‘x-variable’ . Hence, logistic regression is a
simple method that is applicable to data obtained from selective genotyping.

The principle of the method is as follows:

Let p=P(Q), i.e. probability of having inherited the Q-allele from the sire

and assume genotype means of i + a and [ - a for genotypes Q- and g- resp.

In singletrait analysis, the logistic regression model iswritten as:

Iog(li) =a+hy
-p

—1++/1+b?%c?

The QTL effect can be calculated as a = b

where 62 is the sum of the residual variance o.® and the QRTL variance = a*

In multiple trait analysis, the model is: Iog(li) =Y'B
-p
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whereY and 3 are vectors. The vector of QTL effectsis

A= 2P
1+ /B2 [5+1

covariance matrix and the QTL covariance matrix.

where> =V * AA’ isthe sum of the residual

If there is no recombination between marker and QTL, we can observe p.

However, in case of recombination (r), p dependsonr.

We can observe p if the marker is at the QTL (no recombination). Henshall and
Goddard (1999) suggest that in case of recombination, the vector (3 can be
estimated at each marker (asif it wasthe QTL), and the estimate for 3 at any
position between two markers is obtained by linear interpolation. They also show
how the log-likelihood can be calculated for any position of a QTL between two
marked loci.

Acknowledgement: Thanks to Orjan Carlborg*, Leif Andersson* and Brian Kinghorn
for permission to use direct quotation. Jie Song os acknowledged for summarizing the
ML estimation procedure.
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Exercise 1 Inheritance probabilitieswith two markers

Consider two markersthat are 40 cM apart. The alleles are M1/m1 at locus 1 and M2/m2
at locus 2.

— Cadculate the recombination frequency between the markers, assuming Haldane's
mapping function

— Calculate the recombination frequency, assuming Kosambi’s mapping function

From now on we will use Haldane' s mapping function.

Now assumethereisaQTL effect at 10 cM from the first marker locus. The QTL has
two alleles (Q/q). Consider a bull that has received a M1QM2 gamete from the sire and a

mlgml gamete from the mother.

— What are the expected paternal marker haplotypes in the offspring from this bull?

— What are the recombination frequencies between the marker loci and the QTL.

— How many paternal haplotypes for the three loci (M1-Q-M2) can be found in the
offspring from this bull? What are their expected frequencies?

— Cadculate conditional probabilities for carrying the Q-allele for each paternal
marker haplotype.

— Cadculate expected phenotypic means for each group of progeny of a particular
paternal marker haplotype, given the genotypic means of QQ, Qg and qq
genotypesare 9, 10 and 11, respectively. Assume that the dams of the progeny

contribute g alleles only.
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Exercise 2: Interval Mapping of QTL

We continue with the case asin Exercise 7.2. We have now 8 half sib progeny from the
sire with the following data:

Paternal marker phenotype
hapl otype

M1M?2 9.7
M1M?2 10.3
M1m2 10.2
M1m?2 9.5

miM?2 9.8

m1iM?2 9.2

mlm2 9.3

mlm?2 8.8

Estimate relevant effects (which?) for aQTL that is positioned at 10 cM from marker
locus 1 and 30 cM from Marker locus 2.

Test whether thereisasignificant QTL effect at thislocation.

Now use the excel spreadsheet QTLDET.XLS.
The spreadsheet allows you to enter data in the blue cells about position of marker and

QTL, and to give QTL parameters.

Verify the answers you obtained from the previous exercise concerning maker

hapl otype probabilities, and Q-probabilities conditional on marker haplotypes.

The spreadsheet also allows you to simulate data for a half sib group.

Simulate data for 200 progeny, using the parameters as given in Exercise 2.2 and 1.3.
Use avariance of 1.

What can you conclude concerning the QTL effect from your simulation? What
evidence/criteria have you used to draw such conclusions.

Now simulate 10 such data sets. Determine the average value for the relevant QTL
parameters, and their standard deviation.

Try to work out what would be a reasonable (minimal) progeny group size to detect
thisQTL

Y ou can also work out the minimal progeny group size needed to detect aQTL of 0.5
and 2, respectively.

Does the size of the marker bracket have alarge effect on the minimal progeny group
size?
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Exercise 3: Modelsfor multiple QTL

Datais analysed from an experiment where we have hypothesised two QTL, each with
two aleles (A and for thefirst locus and B and b for the second locus, respectively.
Y ou can use the spreadsheet LINMOD.XLS to analyse the data.
We have estimated the means for 16 QTL genotypes using phenotypic and marker
genotype datafrom a QTL experiment. The QTL genotypes are inferred based on
hypothetical QTL positions that were derived from the marker haplotypes.

- Investigate for the following data the genetic model.

- Estimate additive and dominance effects at each QTL.

- Test whether effects are significant

- Test whether thereis epistasis between the QTLSs

Genotype Mean  Number observed
AABB 13.08 25
AABb 9.79 21
AabB 9.83 16
Aabb 8.72 23
AaBB 14.18 28
AaBb 9.62 32
AabB 10.15 17
Aabb 10.58 31
aABB 12.16 27
aABb 10.23 28
aAbB 9.79 19
aAbb 7.65 17
aaBB 7.97 34
aaBb 5.62 18
aabB 7.65 24
aabb 6.89 27
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