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In this Chapter we will discuss first the principles of mapping based on two markers 

(interval mapping) and then in more detail regression analysis and Maximum Likelihood 

methods for QTL mapping. Regression methods are generally much easier to use 

(standard software like SAS or ASREML can easily be used), and the method is much 

faster computationally. Maximum likelihood is computationally more demanding, and 

specific software is needed. For many designs, results are very similar to regression. This 

makes regression analysis attractive as it can be used in resampling methods. 

Resampling methods are use to determine test statistics for hypothesis testing. In this 

Chapter we will discuss bootstrapping and permutation tests. 

 We will also discuss QTL mapping with multiple markers (more than 2) and methods to 

account for more than one QTL. Accounting for other QTL has been proposed by 

including cofactors, or by using composite interval mapping.  

 

There are two further classes of methods that are not extensively discussed in this 

chapter. Those are the mixed model methods and Monte Carlo Markov Chain methods. 

In both methods, QTLs are modeled either as fixed or as random effects, and additional 

random effects can account for polygenic variation. Combined segregation and linkage 

analysis is needed to infer QTL genotype probabilities from marker data. Mixed model 

methods are based on the Gametic Relationship Matrix, which will be briefly discussed.  

Both methods are useful in ‘complex pedigrees’, typical in animal breeding data 

from outbred populations. When line crosses are analysed, or half sib families ignoring 

relationships across families, such methods are less relevant, and they have not been 

extensively used in QTL detection studies. In most animal breeding applications, 

however, such methods are typically needed in genetic evaluations including QTLs.  

We will discuss mixed model methods including QTL effects in a next chapter.   
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Single versus multiple markers 

 

Association between a quantitative trait and genetic markers can be evaluated using 

single markers or multiple markers. When using one single marker, it is possible to make 

inference about the segregation of a QTL linked tot that marker. However, in the case of 

single markers it is not possible to distinguish between size of a QTL effect and its 

position (relative to the marker). Also, single marker analyses have less power if the 

markers are far apart. 

 

If two (or more) markers are jointly used in an analysis, there is a lot less confounding 

between the position and size of QTL effect, and there is more power in detecting a QTL, 

even if the markers are far apart. Inference about the QTL effect as well as the 

recombination rate between QTL and markers (i.e. position of QTL) is possible.  The 

recombination rate between markers is usually assumed known. 

Therefore mapping of a QTL therefore requires the use of multiple marker genotypes in 

the analysis.  

 

Determining associations between genetic markers and QTL with two markers 

 

For two markers, the QTL probability given the marker genotype depends on more 

recombinations: those are the recombination rates between M1 and QTL (=r1), between 

M2 and QTL (=r2) and between M1 and M2 (=r12).  

We consider again a half sib design where we know the sires marker genotype for two 

markers, the sire is heterozygous for the QTL and we know the marker-QTL phase.  
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TABLE 1 
Parental genotype  M1 Q M2 
    m1 q m2 
 Possible gametes  recombination?   Gamete probability 
M1 Q M2  no    (1-r1)(1-r2)/2 
M1 q M2  double: M1-q, q-M2  r1.r2/2 
        
M1 Q m2  yes: Q-m2   (1-r1)r2/2 
M1 q m2  yes: M1-q   r1(1-r2)/2 
 
m1 Q M2  yes: m1-Q   r1(1-r2)/2 
m1 q M2  yes: q-M2   (1-r1)r2/2 
 
m1 Q m2  double: m1-Q, Q-m2  r1.r2/2 
m1 q m2  no    (1-r1)(1-r2)/2 
 

Assume now also (for simplicity) that we know which marker alleles came from the sire. 

We can now work out the expected difference between the paternal marker genotype-

groups in the sire’s progeny: 

 

TABLE 2 
Marker alleles    QTL allele   frequency      Expected mean 
obtained from sire  obtained from sire    of progeny 
group 
M1M2    Q   (1-r1)(1-r2)/2  µ + α 
M1M2    q   r1.r2/2   µ 
 
M1m2    Q   (1-r1)r2/2  µ + α 
M1m2    q   r1(1-r2)/2  µ  
 
m1M2    Q   r1(1-r2)/2  µ + α 
m1M2    q    (1-r1)r2     µ 
 
m1m2    Q   r1.r2/2   µ + α 
m1m2    q   (1-r1)(1-r2)/2  µ 
α = average effect of allele substitution of Q (over q). 
 

 

Some tedious algebra would give the following means for the possible paternal marker-

haplotypes in progeny (sum of frequency * mean of group and divide by frequency of 

marker haplotype group) 
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TABLE 3. Expected means of different marker haplotypes.  
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The difference between the M1M2 and m1m2 haplotypes is now equal to . 
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12r1
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−
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and as r1r2 is usually a small number, this difference is quite close to the actual QTL 

allelic effect (α). The coefficient for α in Table 3 in the last column is the probability of 

having inherited Q from the sire, conditional on (given the) the paternal marker 

haplotype. This is shown more explicit in Table 4. 

 

 

TABLE 4. Probabilities for having inherited the paternal Q-allele of different marker 

haplotypes.   
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The following Table 5 gives an example of the probabilities of having inherited the Q-

allele in a half-sib family, given the marker haplotypes (PQ|MiMj). The distance between 

the markers is 40 cM. The QTL location investigated is at 10 cM from M1. Haldane’s 

mapping function is used to determine recombination rates based on these distances. 

Tables 1, 3 and 4 are used to determine probabilities. Table 3 is used to determine 

expected means of each marker type, assuming QTL genotypic means of 10 and 11 for qq 

and QQ, respectively. Note that in first instance only the probability of inheriting Q form 

the sire (given the observed marker types, i.e. P(Q|M1M2)) is relevant. However, in order 

to predict progeny means, we need to know the alleles contributed by dams, as well as the 

genetic model, e.g. existence of dominance. The dam population is assumed to have a q-

frequency of 1 (comparable with a backcross design) 

 

TABLE 5 
Paternal     Probability of marker haplotypes Qq mean =10 qq mean =9.5 Mean  

Markertype P(M1M2) P(M1QM2) P(Q|M1M2) prob(Qq) Prob(qq) Expected 

M1M2 0.362 0.352 0.972 0.972 0.028 9.986 

M1m2 0.138 0.103 0.745 0.745 0.255 9.873 

m1M2 0.138 0.035 0.255 0.255 0.745 9.627 

m1m2 0.362 0.010 0.028 0.028 0.972 9.514 

 

The following figure shows the difference between marker haplotype groups in progeny 

for a single marker (M-m) and for two markers (M1M2-m1m2), for different positions of 

the QTL relative to the M1. 
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The figure shows that the difference between the non-recombinant marker haplotypes is 

much less affected by the marker-QTL distance than the M1-m1 difference for the single 

markers. Moreover, the map position is now not confounded with the QTL effect. In a 

way, map position and QTL effect have become estimable with two markers. 

 

 

The example shown here is based on half sib analysis. The interpretation of the genetic 

effect estimated depends on the constitution of the dam population, as shown in the 

previous chapter. If we want to estimate both a and d, we need a dam population that 

contributes both q and Q alleles, and where we can trace the inheritance from the dam. In 

other words, we need to identify also segregation from the dam. Choosing the dam 

population from a F1-cross of two extreme lines (extreme with respect to the putative 

QTL) would be the best choice. 

 

Inbred lines have been used in QTL mapping to avoid uncertainty about the genetic 

effects estimated. However, in animal population, complete inbred lines (with marker- 

and QTL alleles fixated) are hardly feasible, and possibly less relevant for QTL’s to be 

used in practical applications.  
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In outbred populations, there is less certainty about the animals’ QTL genotypes. Lack of  

design usually means that the marker genotypes are frequently not informative about 

paternal or maternal origin. In the next chapter, the advantages and disadvantages of 

different design will be discussed.  

At this stage we can continue that for ‘any’ design, the QTL estimation is based on two 

steps 

 

1) What is the probability that an individual has a certain QTL genotype (give the 

observed marker genotypes) 

2) What is the estimated effect of this particular genotype on the individuals’ phenotypes  

 

The first step is much easier in well-defined experiments. The second step can be 

quantified either by using the likelihood principle, or by using regression (where the 

match is measured in terms of residual sums of squares). 

We present the principle briefly here, and thereafter we will discuss in more detail these 

different methods. 

 

 

Interval mapping 

 

Maximum Likelihood  

The term ‘interval mapping’ is used for estimating the position of a QTL within two 

markers (often indicated as ‘marker-bracket’). Interval mapping is originally based on the 

maximum likelihood but there are also very good approximations possible with simple 

regression. 

 

The principle is: 

 

1) The Likelihood can be calculated for a given set of parameters (particularly QTL-

effect and QTL position) given the observed data on phenotypes and marker 

genotypes. 
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2) The estimates for the parameters are those were the likelihood are highest. 

 

3) The significance can be tested with a likelihood ratio test: 

 

LR = 
)mod(_

)mod(_ln2
elfullLikelihoodMax

elreducedLikelihoodMax−  

 

The reduced model refers to the null-hypothesis, e.g. "there is no QTL effect" 

 

Using the log-likelihood: LR = -2.(ln_Lreduced – ln_Lfull) 

 

where ln_L is the loge of the maximum likelihood. 

 

The evidence for a particular QTL at a particular chromosomal position can be displayed 

as a likelihood map, The LR-statistic is plotted against the map position of the QTL. 

 

Lander and Botstein (1989) introduced first the concept of likelihood maps. The proposed 

to use the LOD-score as a test statistic. However, the LOD score is equal to a constant 

(1/4.61) time the LR test statistic, as shown: 

 

The LOD score for a QTL at position c is:   

 

LOD(c) = - 
61.4

)(
10ln2

)(
),mod(_
)mod(_log10

cLRcLR
celfullLikelihoodMax
elreducedLikelihoodMax ≈=

 

 

The following figure shows a likelihood map for a marker bracket based on simulated 

data from one half sib family (backcross) with 300 progeny. The simulated QTL effect 

was 0.5 within-family standard deviations. The figure shows the true LR value based on 

ML, and the approximate LR (upper line) based on regression analysis. 
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Regression Methods 

 

ANOVA analysis using single marker genotypes. 

 

A marker genotype (or marker-haplotype) represents a fixed effect class. 

 

 y =  µ + MG1 + e 

 

The number of marker genotypes is 2 in backcrosses of inbred lines and 3 in F2 

populations. However, most animal populations are not inbred and could have more 

genotypes, which will have less power. 

The analysis gives an F statistic, and provides a quick and simple method to detect which 

markers are associated with a QTL.  

 

LR and approximate LR
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ANOVA analysis using multiple marker genotypes. 

 

Each marker genotype (or marker-haplotype) represents a fixed effects class. 

 

 y =  µ + MG1 + MG2 +……….+ MGn 

 

This is a multiple regression model, and markers can drop out of the model if they are not 

significant. The set of markers that is significant in the final analysis point to the 

existence of a significant QTL effect (or more, depending how far the markers are apart). 

The analysis does not take into account any recombination rates between markers, or 

between QTL and markers. In that sense it is comparable with regression on single 

marker genotype. The multiple marker method is more powerful than single marker 

analysis, and when the markers are well spread over the genome, it is better able to 

distinguish the position of the QTL. Normally, after detection of such a location, analysis 

with interval mapping would be recommended.  

 

Regression on QTL probability, conditional on marker haplotypes. 

 

For a given marker genotype, or marker haplotype that was inherited from the sire, we 

can calculate the probability for having inherited the Q or the q allele. It seems therefore 

natural to regress phenotype on Q-probability. We illustrate the method for two marker, 

which is therefore like interval mapping.  

The model is 

 

    y = µ + α.x + e 

 

  where   y is the observed phenotype 

x is the probability of having inherited a paternal Q,  

given the observed marker genotypes, and 

marker/QTL positions: P(Q|mg1, mg2, r1,r12) 
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The  coefficient for x are obtained for a given QTL position as in Table 4. Note that 

different positions give 4 different x values for the 4 haplotypes. For a each QTL 

position, the residual sums of squares can be determined, and the estimate of the QTL 

position is there where SSE is minimum. This is interval mapping. 

 

 

For each recorded animal, we can then give a predicted phenotype with this “QTL-

model” which is equal to 

    ii x.âˆŷ +µ=   

 

where the “hats” refer to estimated  (predicted) values. 

 

A model ignoring a QTL would predict each observation as  

 

0ˆŷ µ=   

 

where 0µ̂  is typically the general progeny mean 

  

Now let the total sum of squares (SST) be the sum (over animals) of   2
0 )ˆŷ( µ−   

 

and let the residual sum of squares (SSE) be the sum (over animals) of   2
ii )x.âˆŷ( −µ−   

 

Each map position will yield an SSE and the position with the lowest SSE is the most 

likely position. 

 

A test statistic for this method is for an experiment with n observations is  

   LR = )
SSE
SSTln(n  
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where n is equal to the number of observations. The LR stands for “Likelihood Ratio”, as 

this test statistic is approximately similar to the LR from maximum likelihood. 

Haley and Knott (1992) have shown that this similarity. If there are more fixed effects in 

the model, the test statistic is calculated as  

 

   LR = )ln(
full

reduced

SSE
SSE

n  

 

Which is ratio of the residual sums of squares in a model with the QTL (”full’) and a 

model without it (‘reduced’). 

 

The information about a QTL is only dependent on the flanking markers. If the QTL lays 

outside the bracket, it will only depend the nearest marker. Likelihood maps can be 

constructed for neighbouring marker brackets and they should exactly match up at each 

marker, and a map of multiple intervals M1-M2-M3....-Mk is smooth.  
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Example of QTL mapping by regression:  

Data on 8 individuals with paternal marker haplotypes given. The probabilities are 
derived for different positions (dM1-Q is distance between marker 1 and QTL), with 
further the same assumptions as  in this chapter (see Table 5). 
 
 

[ X ] yhat y

1.0000 1.0000 50.3656 50.9813
1.0000 1.0000 50.3656 49.9813
1.0000 1.0000 50.3656 50.7500
1.0000 1.0000 50.3656 49.7500
1.0000 0 50.1344 50.7500
1.0000 0 50.1344 49.7500
1.0000 0 50.1344 50.5187
1.0000 0 50.1344 49.5187

dM1-Q SST SSE LR

0 2.2139 2.1070 0.3961

[ X ] yhat y
1.0000 0.9718 50.4321 50.9813
1.0000 0.9718 50.4321 49.9813
1.0000 0.7451 50.3446 50.7500
1.0000 0.7451 50.3446 49.7500
1.0000 0.2549 50.1554 50.7500
1.0000 0.2549 50.1554 49.7500
1.0000 0.0282 50.0679 50.5187
1.0000 0.0282 50.0679 49.5187

dM1-Q SST SSE LR

0.1 2.2139 2.0455 0.6331

[ X ] yhat y
1.0000 0.9625 50.4813 50.9813
1.0000 0.9625 50.4813 49.9813
1.0000 0.5000 50.2500 50.7500
1.0000 0.5000 50.2500 49.7500
1.0000 0.5000 50.2500 50.7500
1.0000 0.5000 50.2500 49.7500
1.0000 0.0375 50.0187 50.5187
1.0000 0.0375 50.0187 49.5187

dM1-Q SST SSE LR

0.2 2.2139 2.0000 0.8129

markers

M1M2
M1M2
M1m2
M1m2
m1M2
m1M2
m1m1
m1m1

[ X ] yhat y

1.0000 0.9718 50.4321 50.9813
1.0000 0.9718 50.4321 49.9813
1.0000 0.2549 50.1554 50.7500
1.0000 0.2549 50.1554 49.7500
1.0000 0.7451 50.3446 50.7500
1.0000 0.7451 50.3446 49.7500
1.0000 0.0282 50.0679 50.5187
1.0000 0.0282 50.0679 49.5187

dM1-Q SST SSE LR

0.3 2.2139 2.0455 0.6331

1.0000 1.0000 50.3656 50.9813
1.0000 1.0000 50.3656 49.9813
1.0000 0 50.1344 50.7500
1.0000 0 50.1344 49.7500
1.0000 1.0000 50.3656 50.7500
1.0000 1.0000 50.3656 49.7500
1.0000 0 50.1344 50.5187
1.0000 0 50.1344 49.5187

dM1-Q SST SSE LR

0.4 2.2139 2.1070 0.3961
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Haley-Knott regression 
   

Haley and Knott (1992) have proposed a slight reparameterization from the previous 

model, but the principle is similar. Rather than dealing with marker haplotypes, they 

present a more general model where QTL genotypes are dependent on marker genotypes. 

The probability of carrying a certain QTL genotype depends on the marker genotypes and 

the design 

  

    y = µ + α.x1 + βx2 + e 

 

  where   y is the observed phenotype 

x1 = P(QQ|Mi) – P(qq|Mi) 

x2 = P(Qq|Mi) 

 

x1 and x2 are probabilities for QTL genotypes conditional the flanking marker genotypes. 

The regression coefficients α and β represent the difference between the homozygote 

QTL genotypes, and the QTL dominance effect, respectively. 

Haley and Knott are well known for their proposed regression model, but an important 

result from their paper was the similarity that was shown with maximum likelihood. They 

proposed to use the following test statistic, indicated as ‘approximate Likelihood ratio 

test’: 

   LR = )ln(
full

reduced

SSE
SSE

n  = -n.ln(1-r2) 

 

Which is ration of the residual sums of squares in a model with the QTL (”full’) and a 

model without it (‘reduced’). The term r2 is the usual R-squared, used for the percentage 

of variance explained by the model (only applicable if there are no other fixed effects). 
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Regression of phenotype on marker type 

 

The previous two regression models proposed regressing phenotype on Q-probability, 

conditional on marker type. As this probability depends on QTL position, relative to 

markers, interval mapping can be used. A regression analysis is needed for all possible 

positions (usually in 1 cM steps) within the marker bracket. 

 

Whittaker et al. (1996) have shown that direct regression of phenotype on marker types, 

provides the same information about location and QTL-effect without having to step to 

all positions on the interval. 

 

For interval mapping we used: y = µ + α.x + e           [1] 

 

where x = P(Q|mg1, mg2, r1,r12) 

 

Whittaker et al. (1996) proposed their model for a backcross or F2 population: 

 

   y = µ + αλ .xL  + αρ.xR + e         

 

Now λ = P(Q|XL = M1M1, XR = m2m2) and ρ = P(Q|XL = m1m1, XR = M2M2).  

The term α is the effect of Q. The terms xL and xR refer to left and right marker, and have 

values –1, 0 and 1 for mimi, Mimi and MiMi, respectively. From the regression 

coefficients: β1 = αλ , and β2 = αρ, it was shown (Whittaker et al., 1996) that location and 

QTL effect can be estimated: 

 

location (recombination between M1 and QTL)  

 

 r1
2

2 1

05 1 1 4 1
1 2

= − − −
+ −









. ( )

( )
β θ θ

β β θ
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and the estimate of the QTL effect: 

 

 α β θ β β θ β
θ

= + − + −
−

[ ( ) ][[ ( )1 2 2 11 2 1 2
1 2

 

 

where θ = r1+r2(1-2r1). Hence a single analysis can give the same result as a complete 

interval mapping. Note that the assumption is here that there are no QTL’s in the 

neighboring marker-brackets. 

 

 

 

Maximum Likelihood estimation 

 

In these notes, we will not discuss the detail of a maximum likelihood analysis (for 

interested readers are referred to Lynch and Walsh (1998).  Only the principle is given 

here. 

 

We have a probability of observing certain data (y) for a given set of parameters (θ): 

 

  F(yi)  = P(y|θ) 

 

This function F is indicated as probability density function (pdf). For example, if we take 

normally distributed observations, and the simplest model, with a mean (µ) and standard 

deviation (σ) the pdf looks like: 

    f(yi| µ, σ) = 2

2
2
1 )y(

e
2

1 σ

µ−

πσ
    [2] 

  

The likelihood is the probability of certain parameters, given the observed data: L(θ| y). 

We can use the same function for this, e.g. 
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   L(µ, σ|yi)  =
2

2
2
1 )(

2
1 σ

µ

πσ

−− y

e  

 

The total likelihood of data set y is calculated as the product of all likelihoods for each 

observation. 

 

   L( µ, σ| y)  =  Πi L(µ, σ|yi)   

 

As these likelihoods can become very small numbers, is better to work with the 

LogLikelihood 

 

   LogL( µ, σ| y)  =  Σi LogL(µ, σ|yi)   

 

Also for an alternative model, e.g. with a QTL effect, we may have different means. 

A new set of parameters is then (µ1, µ2, α, and σ) and we can write the likelihood.  

 

 L(µ1, µ2,, σ|yi)  = P(µ1).
2

2
12

1 )(

2
1 σ

µ

πσ

−y

e + P(µ2).
2

2
22

1 )(

2
1 σ

µ

πσ

−− y

e  [3] 

 

Typically, in QTL analysis, we are not sure about QTL genotype, i.e. whether an 

observation belongs to the Q-mean or to the q-mean. The likelihood is calculated as the 

sum of the two possibilities, each weighted with its probability (=P(µI)). 

 

The distribution of the data under the interval mapping model is generally assumed to 

follow a normal mixture distribution. For example, there are two normal distributions, 

each of which is for a QTL paternal haplotype. The iterative expectation-maximization 

(EM) algorithm is broadly used to calculate the maximum-likelihood estimates (MLE) of 
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the normal mixture model. The ML mapping model used here for locating a QTL (Q) on 

an interval flanked by markers i and i + 1 (Mi and Mi+1) (assuming the order MiQMi+1) 

can be written as: 

yj = u + b xj +ej        j = 1, 2, …, n 

where 

       yj = the trait value of the jth individual 

                                             µ = mean 

b = the effect of the putative QTL 

                                             xj = 




inheritedisqtheif
inheritedisQtheif

0
1

 

                                             ej    ~    N (0, σ2) 

xj, which is unobserved, can take different values with probabilities depending on the 

genotype of the flanking markers (Mi, Mi+1) of the jth individual and the testing position. 

Here, the QTL genotype for an individual is usually missing value, but its distribution can 

be inferred from its flanking marker genotypes. Since the xj could be 1 or 0, the 

likelihood for every position is then a normal mixture distribution with mixing 

proportions equivalent to the probabilities of having inherited paternal alleles Q and q 

from a heterozygous (Qq) sire, pj and 1 - pj. As in [3] but now for n individuals in a 

population, the likelihood function of the model is: 
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φ  is the standard normal density function. It can be seen that 

the likelihood depends on pj, which is determined by the QTL position and the marker 
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genotypes, as well as phenotypic data (yj).  The maximum likelihood estimates of the 

parameters b, µand σ  2 are derived based on the EM algorithm, that is by iterating the 

following equations and beginning with the random starting values of each parameter. 

The EM approach proceeds as follows: 

 

(1) E-step:  we write down expected values for genotype probabilities (the ‘missing 

values’), given current estimates of the parameters:                
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where k refers to iteration round and )(k
jP can be called the posterior probability of xj = 1. 

 

(2) M-step: estimate parameters given these probabilities 
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From the above four equations, it can be seen that each parameter depends on estimates 

of other parameters. Therefore, in each iteration, the algorithm consists of one E-step, 
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equation (5.1), and three M-steps, equations (5.2), (5.3) and (5.4). This process is iterated 

until convergence of estimates. 

 

A test of significance is obtained by comparing the maximum likelihood with the 

likelihood of a model with the tested parameter omitted (reduced model). 

 

LR = 
)mod(_

)mod(_ln2
elfullLikelihoodMax

elreducedLikelihoodMax−  

 

The reduced model refers to the null-hypothesis, e.g. "there is no QTL effect" 

 

Using the log-likelihood: LR = -2.(ln_Lr – ln_L) where L stands for LogLikelihood. 

 

 

Example of simple QTL mapping with maximum likelihood 

 

In QTL analysis the data consists not only of phenotypic observations of performance, 

but also of marker genotypes. 

Using the example as in chapter 7, where we looked at a half sib family with known 

paternal marker haplotypes, we could calculate the probability of having inherited the 

paternal QTRL alleles for each of the four marker haplotypes (and given the 

recombination  fractions, i.e. for a given QTL position) 

 

If the dam alleles are fixed there are only two possible QTL genotypes, hence we can 

calculate the likelihood for each observation as in [3]. If the dam alleles are not fixed, we 

would have to sum over all three possibilities. 

In a simple fixed effects model, the ML estimate of the fixed effect parameters is equal to 

the LS estimate of the fixed effects. Hence for a given QTL positions we can calculate µ 

and α from a regression as in [1] and subsequently calculate the likelihood as in [3]. 
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The following Table shows a likelihood calculation of the example as in Chapter 7, for 

the QTL position M1-Q = 0.1 

 
Phenotype Marker 

haplotye 

Prob(Q|markers) Expected 

phenotype 

(H1-model) LogL0 LogL 

50.98 M1M2 0.9718 50.43 -1.18884 -0.81727 

49.98 M1M2 0.9718 50.43 -0.4575 -0.65658 

50.75 M1m2 0.7451 50.34 -0.73859 -0.59655 

49.75 M1m2 0.7451 50.34 -0.73859 -0.91164 

50.75 m1M2 0.2549 50.16 -0.73859 -0.91152 

49.75 m1M2 0.2549 50.16 -0.73859 -0.59663 

50.52 m1m2 0.0282 50.07 -0.4575 -0.65648 

49.52 m1m2 0.0282 50.07 -1.18884 -0.81739 

   sum -6.24705 -5.96407 

 

 

Model with no QTL: 

The general mean = µ0 = 50.25. 

SST = (sum of deviations from general mean) = 2.21 giving a variance σ0
2 = 0.316 

The likelihood is calculated according to [2] using µ0 and σ0
2 

The sum of the Log Likelihood over the whole data for the H0-model = -6.247 
 

Model with a QTL 
Regression analysis gave solutions µ = 50.057 and α = 0.386. 

SSE = (sum of deviations from expected phenotype) = 2.05 giving a variance σ2 = 0.292 

The likelihood is calculated according to [3] using  σ2
, and the two means are  

µQ = µ + α = 50.443  and  µq = µ = 50.057 and the weights are P(Q) and 1-P(Q), 

where P(Q) is given for each individual in the third column of the Table. 
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The sum of the Log Likelihood over the whole data for the H0-model = -5.964 

 

The LR-value = -2(L0 – L) = -2(-6.247 + 5.964) = 0.57. 
(Note: this is NOT the Maximum Likelihood, as we have used the residual variance as (over) estimated by 

regression). 

 

The approximate LR value from regression was  

appr.LR = )ln(
full

reduced

SSE
SSE

n  = 8.ln(2.21/2.05) = 0.63. 

 

 

 
Multi-family analysis 
 
With more families in an outbred population, the phase maybe different in different 

families, or the sires may be homozygote for the QTL. The QTL analysis in multi-family 

was performed according the following model [Kerr, 2000]:                             

                yij = µi + (Z111,ij + Z122,ij) b – (Z112,ij + Z121,ij)b + eij 

 

where yij is the corrected phenotype of the jth progeny of the ith sire, µi is the mean of the 

ith sire family, b is the magnitude of the effect of QTL allele inherited from the sire, and  

eij is the random error term. Compared with the b in previous section, b in this model is 

only one half of the previous b because it is considered that the QTL effect is +b if the 

progeny inherited the Q allele and the QTL effect is -b if the progeny inherited the q 

allele in this section. (IN the previous section the QTL effect was either 0 if the progeny 

inherited the q allele or b if it inherited the b allele). The variables Z111,ij, Z122,ij etc. are 

indicator variables taking the value 1 or 0 with the probability depending on the unknown 

probability that sire is heterozygous (h), the probability that the sire has one of two 
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equally likely possible linkage phases, the genotypes of the flanking markers and the 

position being tested, where 

Z1,i = 1, if the ith sire is heterozygous 

Z2,i = 1, if the ith sire is homozygous 

Z111,ij = 1, if the ith sire is heterozygous, has phase 1 and its jth progeny has inherited the  Q allele 

Z112,ij = 1, if the ith sire is heterozygous, has phase 1 and its jth progeny has inherited q allele 

Z121,ij = 1, if the ith sire is heterozygous, has phase 2 and its jth progeny has inherited the q allele 

Z122,ij = 1, if the ith sire is heterozygous, has phase 2 and its jth progeny has inherited the  Q allele 

 

When one progeny has been assumed to be one type of Z111,ij, Z112,ij, Z121,ij and Z122,ij, this 

type equals 1 and the other three types are all 0.  

 

Denoting all µi by the vector µ, the number of sires by ns and the number of progeny in 

each sire family by ni, the likelihood function for this model is [Knott, 1996 #43]: 

L (h, µ, b, σ2) = 
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where ijp  is the specific prior probabilities that the progeny has inherited the Q allele, 

conditional on the genotypes of flanking markers i and i + 1 and the position being tested, 

1 - ijp  is the prior probability that the progeny has inherited the q allele, )(zφ  is the 

probability density for the normal distribution, and h is the probability if sire is 
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heterozygous. Solutions again obtain using an EM algorithm (see Kerr 2000 or Song 

2003). 

 

 

Comparison of likelihood and regression procedures 

 

The difference between maximum likelihood and regression is that the last method 

assumes normality within a marker group, i.e. there is a homogeneous variance within a 

marker group (errors only due to e). Maximum likelihood accounts for the fact that 

within a marker group, some animals have obtained a q and some have obtained a Q, 

hence there are actually two distributions. The fact that the test statistics are practically 

very similar shows that accounting for this bimodality within marker genotypes is not 

very important. Most of the variation is explained from the differences between the 

marker genotypes. Xu (1995)  shows that the regression method is somewhat biased: it 

overestimates the residual variance, and therefore tends to give lower values for the 

approximate LR test. This bias is larger if the difference between Q and q is larger, and 

when there is less certainty about QTL-allele inherited. The largest differences between 

the two methods will be found in the middle of a marker bracket, when there is most 

uncertainty about which QTL allele was inherited.  

Xu’s suggest correction is 

 ∑
=

−−=
4

1

222
_ )1(

i
iiecorrectede ppaσσ  

 

where pi is the probability of having inherited Q in marker genotype class i and a is the 

regression coefficient on Q-probability in the regression model. Generally, this 

adjustment has only a small effect, unless the QTL effect is very large and markers are 

far from the QTL position 

 

It should be noted that ML procedures depend on the distribution of the phenotypes. 

Regression analysis is much more robust against deviation from normal distributions. 
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On the other hand, in outbred populations, ML is better able to use all possible 

relationships to infer upon marker- and QTL probabilities. With no markers, ML analysis 

would still boil down to a segregation analysis, whereas regression methods would not be 

able to make any inferences at all. However, regression methods combined with a 

genotype-probability-type algorithm could be very competitive to a ML analysis (see 

next). 

 

The Gametic Relationship Matrix approach 

 

This can be the most complete approach containing all information on pedigree in an 

outbred population. In this approach, we first set up a GRM; a symmetrical matrix that 

contains a row and column for each gametic haplotype (2 per animal, one from each 

parent) in the population of animals that we have.  Such a matrix is specific to the 

chromosomal region of current interest.  Each element in this matrix is then the 

probability of identity-by-descent for the representations of this region (one 

representation per gamete).  Here are simple examples of this “Gametic Relationship 

Matrix” (GRM).  Notice that without marker information we must resort to simple 

segregation probabilities – however, marker information allows us to be more ‘surgical’ 

in allocating identity-by-descent probabilities: 
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Figure. Gametic relationship matrices (GRM) for a QTL are of dimension 6 sites x 6 sites 
for the simple 3-animal pedigree shown.  Elements of the GRM are probability of identity 
by descent of the alleles at the prevailing pair of sites.  In the GRM to the left, no marker 
information is available, and, for example, probability of identity by descent between 
sites 4 and 6 is 0.5, as site 6 (maternal) could have inherited from sites 3 or 4 with equal 
probability.  In the GRM to the right, a marker with alleles A, B and C is available, and 
for example, probability of identity by descent between sites 4 and 6 is 1, for the marker 
locus.  If the QTL is linked with a recombination fraction of 0.1, then the probability of 
identity by descent between sites 4 and 6 is 0.9, for the QTL, with a 0.1 probability (in the 
event of recombination) for sites 3 and 6.  Special attention is required where there is 
ambiguity of marker allele inheritance (Wang et al., 1995). 
 

 

With a good data set, the GRM gives us a lot of information for mapping. You can 

visualise regions of identity-by-descent in the following diagram. In the diagram, the top-

left founder animal has QTL allele Q in its paternally inherited region of haplotype 

(coloured red).  For all its descendants, the GRM gives us probabilities that the have 

inherited the same bit of DNA, holding that Q allele.  We can then simple regress their 

phenotypes on these probabilities to get an estimate of the effect of Q on phenotype. 

The Gametic Relationship Matrix

Dad Mum Prog.

Site 1 2 3 4 5 6

Dad 1 1 0 0 0 .5 0

2 0 1 0 0 .5 0

Mum 3 0 0 1 0 0 .5

4 0 0 0 1 0 .5

Prog 5 .5 .5 0 0 1 0

6 0 0 .5 .5 0 1

Dad Mum Prog.

Site 1 2 3 4 5 6

Dad 1 1 0 0 0 .9 0

2 0 1 0 0 .1 0

Mum 3 0 0 1 0 0 .1

4 0 0 0 1 0 .9

Prog 5 .9 .1 0 0 1 0

6 0 0 .1 .9 0 1

 Dad                       M um

 1   2                       3   4

               Prog.

               5   6

 D a d                        M u m
A   B                        A   C
1    2                        3    4

P r o g
A   C
5    6
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The strategy is to construct a GRM (or a subset of it) for each location in the genome, and 

test the goodness of fit of the resulting regression.  We end up with something like this 

for each chromosome: 
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Precision of mapping and hypothesis testing 

 

Maximum likelihood estimates are approximately normally distributed for large sample 

sizes and confidence intervals can be based don the sampling variances. However, these 

are often not so easy to obtain. 

Approximate 95% confidence intervals for QTL position can be constructed using the 

‘one-LOD rule’ (Lander and Botstein, 1989). All QTL with a LOD score value less than 

1 from the maximum fall within this confidence interval. Note that 1 LOD score 

corresponds to a LR value of 4.61, which has a significance value of 4% for the χ2
1- 

distribution.   

 

LR tests have a χdf
2-distribution, where df refers to the degrees of freedom of the tested 

parameter (i.e. the difference in df between the full model and the restricted model). 

In QTL analysis, this statistic provides only an approximate test, as the null-hypothesis 

involves a non-mixture distribution whereas the QTL model involves a mixture 

distribution.   

Also regression analysis provide only approximate test statistics, as they assume normal 

distributed errors within  marker type, whereas the distribution is really a mixture of two 

(or 3). 

Simulation studies have been used to examine distributions of test statistics, or to 

determine threshold values. However, such studies rely on the true data have the same 

distribution as the simulated data.  

 

Permutation testing 

 

Churchill and Doerge (1994) proposed permutation testing to obtain empirical 

distributions for test statistics. In a permutation test, the data is randomly shuffled over 

the marker data. Analysis of the permutated data provides a test statistic, as it is the result 

of the null-hypothesis (marker not associated with QTL).  

The number of permutations required is about 10,000 for a reasonable approximation of 

threshold levels of 1% (Churchill and Doerge, 1994). The important property of this 
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method is that it does not depend on the distribution of the data. A permutation test is 

typically used to determine a threshold value for significance testing of the existence of a 

QTL effect. 

 

Bootstrapping 

 

Bootstrapping, described by Visscher et al., (1996) is a resampling procedure. From the 

original dataset, N individual observation are drawn with replacement. An observation is 

a phenotype and its marker type, hence unlike in permutation testing, the observed 

combinations remain together. Note that some observation may appear twice in the 

bootstrap sample, whereas other may not appear at al. Visscher et al (1996) show that 

confidence are approximated very well with this method, with only 200 bootstrap 

samples used. A bootstrap method is typically used to determine an empirical confidence 

interval for the QTL location, assuming that the QTL effect exists. 

 

Accounting for multiple testing 

In QTL analysis, usually many markers are tested, often for multiple traits and in multiple 

families. The risk of false positives is very high with so many tests. If a 5% significance 

level would be used, we would expect 5% false positives! Therefore, a more stringent 

significance level is usually applied for gnome wide QTL detection, e.g. 0.1%. 

 

In general (quoted from Lynch and Walsh, 1998): 

If n independent tests with significance level α are conducted, the probability that at least 

one test is false positive is  γ = 1 – (1 - α)n. 

 

25 tests with a significance level of 1% would give a probability of 22% to find false 

positives.  It is nearly one for a few hundred tests. 

  

A more stringent level is required (known as the Bonferroni correction): 

 

 α = 1 – (1 - γ)1/n ≈ γ/n. 
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Hence, for 200 tests we would need a significance level of 0.05/200 = 0.00025 to have a 

chance of false positives of about 5%. Usually, a significance level of around 0.1% is 

applied. 

However, test statistics from common analysis are usually not valid. Empirical threshold 

values obtained by permutation testing are more reliable. Permutation testing can also be 

used to obtain genome-wide significance levels, by simply repeating the procedure across 

all markers. 
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Methods for detecting multiple interacting QTL 

 

Julius  van der Werf and Brian Kinghorn 
 

Introduction 

 

In the last lecture you found out about regression and maximum likelihood methods for 

detecting QTL.  The extension to cater for multiple interacting QTL is best illustrated on 

the basis of analysis by regression. 

 

The strategy is to construct a GRM (or a subset of it) for each location in the genome, and 

test the goodness of fit of the resulting regression.  We end up with something like this 

for each chromosome: 

 

 

Accounting for additional QTLs 

 

In the examples discussed, we looked at detecting a single QTL in a marker bracket. 

Now, if there other QTL linked to the markers used in the analysis, we would tend to 

estimate the joint effect of two QTL’s, and we would not be able to distinguish between 

one or multiple QTL. Moreover, the inference we would made from analysis regarding 

size of QTL effect and QTL position would both be biased. We may observe two peaks 

in a likelihood map, which would be an indication of the existence of two QTL, but both 

positions  would be biased. Besides avoiding bias, another reason for accounting for 

additional QTL effects is to reduce residual variance, giving more power to an analysis. 

This would also hold for additional  QTL on other chromosomes (unlinked). 

 

A few approached have been proposed to avoid effects of additional linked QTL. 
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Multiple regression on marker genotypes, 

 

The effect of a QTL on one marker is corrected for possible effects of linked QTL-

effects. The effects of the linked QTL are taken away by effect by fitting markers close to 

these QTL. A simple regression method that considers all markers has been proposed by 

Kearsey and Hyne (1994).They propose to plot the difference between marker types, i.e. 

one difference for each marker locus.  This is described in more detail by Lynch and 

Walsh (1998, p. 461), who refer to this method as marker-difference regression. 

 

Interval mapping with marker co-factors (composite interval mapping) 

 

 Jansen (1993) proposed an interval mapping approach where additional markers were 

included in the model as cofactors.  Such an additional QTL (say QTL2) can be 

accounted for if there is information about additional markers (outside the bracket) that 

are linked to QTL2. This analysis is also referred to as composite interval mapping (CIM) 

(Zeng, 1994). Regression is on the additional marker genotypes are, hence, additional 

QTL are accounted for as if they were at the marker locus. 

 

y = µ +  p(QTL1 given marker bracket M1M2) +    markers near QTL2 [5] 

 

Several authors have shown that composite interval mapping gives a large increase in 

power, and much more precision in estimating QTL position. 

 

As we discussed earlier in this chapter, Whittaker et al (1996) found that the regression 

coefficient for two adjacent markers contain all information about position and effect of a 

QTL between those markers. If the QTL is isolated, i.e. there are no  QTL’s in the 

adjacent brackets, than these regression coefficients can not be biased by other QTLs 

outside the bracket. However, no distinction can be made between on or more QTL 

within the bracket. hence, the position estimate within a marker bracket is only unbiased 
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if there is only one QTL. If there are more QTL within the bracket, we can not estimate 

their positions. 

   

rather than accounting for more QTL as in [5] we can also account for them with the 

following model: 

y = p(QTL1| M1M2) +  p(QTL2| other markers near QTL2)    [5] 

 

hence this refers to a multiple interval mapping procedure (Kao et al., 1999).  

Some problems here can be that 1) not all markers are informative, especially not in 

outbred populations 2) it is hard to search for the best fitting model (set of positions) as 

there are many combinations possible with multiple QTL.  

 

Detecting multiple interacting QTL 

 

In Composite Interval Mapping, once we are happy about the most likely position and 

effect of a QTL, we fix that in the analysis – we correct all the animal phenotypes for the 

most likely impact of that QTL on their performance – and then repeat the process to look 

for another QTL. 

 

This has two problems: 

 

•  The estimated position of the first QTL can be influenced by the second QTL, and 

vice-versa.  This is especially dangerous for linked QTL.  A method to 

simultaneously locate the two QTL is preferable. 

 

•  Life is complex – and that means that genes (or gene products) interact with each 

other to produce the organisms that we all are.  The value of a particular gene 

variant will differ between genetic backgrounds.  In some cases it will be the 

weak link to achieving high merit, and in others it will not.  This means that we 

should ideally look for interacting sets of genes.  Otherwise we could miss some 

important genes – and opportunities to exploit them. 
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A more general approach is proposed by Carlborg et al. (2000). 

 

We can nominate two separate positions in the genome as candidate locations for two 

QTL.  We can then construct a GRM for each position, and carry out a 2-locus 

regression, as outlined below, fitting interaction effects between the two loci, as well as 

additive and dominance effects within each locus. 

 

How can we find the best fitting two positions?  Carlborg et al. (2000).demonstrate an 

approach that works efficiently, using a genetic algorithm The genetic algorithm (GA) 

works by “breeding” the best solution to the prevailing mathematical problem.  In this 

case, the “DNA” that the GA uses is simply the candidate positions for the two (or more) 

QTL.  Each of these is a candidate solution to the problem of QTL locations.  Each 

candidate solution competes to become a “parent” in the next generation.  They compete 

on a criterion that is simply the goodness of fit of these positions to the phenotypic data 

and pedigree on hand. 

 

The successful “parent” solutions then combine in some way – exchanging information, 

and mutate to some extent, to generate a new generation of candidate solutions. 

 

Model for fitting interacting QTL 

 

Here is a simple one-locus model of genetic effects, similar to that found in all texts in 

this area. II, Ii and ii are the genotype values for combinations of the two alleles I and i, µ 

is a general mean, Ai is the additive affect and Di the dominance effect at locus i.  
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We can now expand this to cater for effects at two loci.  The classical statistical approach 

(eg. Jana 1971) is typified as follows: 
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The number of parameters to handle has increased from three (µ, Ai  and Di) to nine (µ, 

Ai, Aj, Di, Dj, plus interaction terms AAij, ADij, ADji, and DDij).  Notice that each locus 

here has two alleles. 

More detail is here extracted from Carlborg et al. (2000): 

 

“ 

The objective function used was the residual sum of squared errors from a weighted least 

squares approach to QTL mapping. The method is the extension of the method of Jansen 

(1992) to the two-loci linear model G = m+A1 +A2+D1 +D2 +AA12 +AD12 +AD21 

+DD22 as indicated by the author. The parameters of the model will be explained below. 

Markers have not been used as cofactors and successive iterations in the EM algorithm 

have been removed to increase the computational efficiency during the evaluation 

procedure. The modifications needed to the single QTL mapping procedure described by 

Jansen and Stam (1994) when implementing the two QTL model included duplication of 

each individual nine times (instead of three times i.e. once for every possible two-QTL 

genotype) and the use of an expanded design matrix (X). The design matrix for the two-

locus linear model has been described by Jana (1971). The weight for each observation 

was taken to be the product of the conditional probabilities of the single QTL-genotypes 

given the markers (Haley and Knott 1992) at each of the two fitted QTL. The estimates of 

the model parameters can be found as:  

 

β= (X T WX) -1 XT WY 
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σ2 = (1/N)(Y - X β)T W(Y - X β) 

 

where Y is the complete data vector, X is the design matrix for the complete data, W is 

the diagonal matrix of weights, β is the vector of the regression parameters, σ2 is the 

normal variance and N is the number of individuals (Jansen and Stam 1994).  

 

The residual sums of squared errors can then be calculated as:  

 

SSE = (Y - X β)T W(Y - X β)  

 

The method described above can easily be extended to take account of background QTL 

in the analysis. Two extra ga-genes are added to the genetic algorithm and two extra 

columns are added to the X matrix for each background QTL. The extra ga-genes 

represent the chromosomal location for the QTL and the columns in the design matrix are 

to contain the QTL indicator variables a and d (Haley and Knott 1992), for a QTL at the 

location given by the ga-genes. The rest of the evaluation procedure is the same as 

before. We have evaluated the increase in computational demand for a simultaneous 

search for more than two QTL using this method, but have not investigated any other 

properties. “ 
 

 

Some results 

 

There are two advantages in this approach: 

 

•  The genetic algorithm gives a fast search, saving much computer time.   It 

increases the computational demand by a factor of 3 to 5 when compared to 

the conditional search (Carlborg et al. 2000). The improvement in 

computational efficiency of the GA as compared to an exhaustive enumerative 

search (looking at all pairs of locations in a genome size of 2,000 cM using a 
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resolution of 1 cM) was by a factor 133 for two QTL. An expansion of the 

search to additional dimensions by also searching for background QTL 

simultaneously leads to further computational advantages for the GA based 

search. Improvements are in the order of 65,000 for three QTL and 1.7 x 10 7 

for four simultaneously fitted QTL. 

 

•  As Carlborg et al. (2000) report, the results from the simulation study with 18 

QTL (Figure below) showed that the genetic algorithm based search had 

higher relative efficiency to detect the simulated pair of epistatically 

interacting QTL than the conditional search (ie. composite mapping approach, 

as described above) for all epistatic models tested. The genetic algorithm had 

a relative efficiency of 100% for all epistatic models except for the duplicate. 

The conditional search had between 86 and 96% relative efficiency for the 

dominant, recessive and inhibitory epistatic models and 100% relative 

efficiency for the complementary model. The difference in relative efficiency 

for the search methods was very large for the duplicate epistatic model, where 

the conditional search only had a relative efficiency of 21%, while the genetic 

algorithm based search had a relative efficiency of 93% (this could grow to 

100% with better tuning of the GA parameters).  In the simulation where two 

interacting QTL explained all genetic variation, both methods had a relative 

efficiency of 100%.  
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As Carlborg et al. note: “The genetic algorithm is a general tool to search large parameter 

spaces and could be of use in many other areas in QTL mapping. In this study we have 

used a genetic algorithm in the search for two interacting QTL in a cross between inbred 

lines, but the method can also be used for analyses of crosses between outbred lines and 

in searches for more than two QTL. For analyses of outbred lines, the genetic algorithm 

could also be used when testing for QTL segregation within the founder lines. This would 

be implemented by using a genetic algorithm to group the haplotypes from the founders 

in allelic groups and in this way obtain the most likely allelic constitution for the 

founders and other individuals in the pedigree. This results in greater detection power 

because of more extreme probabilities of identity-by-descent of chromosomal regions 

between phenotyped individuals and each founder.“ 
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Multiple trait mapping of QTL 

 

Jiang and Zeng (1995) have proposed a multiple trait version of the composite interval 

mapping. Their method is based on maximum likelihood, and requires special programs 

for analysis. The authors should considerable increase in power when using information 

from two correlated traits. 

 

 Most QTL detection studies comprise phenotypic data on multiple traits. Joint use of 

data from multiple traits in QTL analysis has two advantages:  increased power and 

testing of models regarding the genetic correlation between two traits. 

 

Increased power of QTL detection  

 

Multiple traits that are correlated can add information to each other. To some extent, two 

measurements on correlated 

traits are somewhat like 

repeated measurements. 

Therefore, information from 

correlated traits can reduce the 

effect of error variance, 

therefore making it easier 

(more powerful) to detect 

QTL. Not only the power of 

QTL detection is increased, 

also the precision of the QTL 

map position is better. 

 
Illustration of increased power from using joint analysis of two traits (J12) over single trait analysis (S1 

and S2)  

Jiang and Zheng, 1995 
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Jiang and Zeng (1995) also discussed the increased power from multiple trait analyses in 

relation to the correlation structure.  

In summary: 

1. If the correlation between the traits (here: correlation between residual effects, 

this could be the sum of residual and polygenic effects) is zero, the joint test 

statistic is approximately the sum of the test statistics for the single traits 

 

LRj ≈ LRS1 + LRS2 if  correlation = 0 

 

2. If the QTL is only affecting one of the two traits, say α2 = 0, then a joint analysis 

can increase the test statistic of detecting that trait, depending on the correlation 

(r) between the two traits. 

 

LRj  ≈ LRS1/(1-r)2 ≥ LRS2 

 

3. The joint test statistic is equal or greater than the maximum of the single trait 

statistics.    

 

LRj  ≥ maximum[LRS1,LRS2] 

 

 

4. r α1 α2  < 0 (i.e r and α1 α2 have different signs) 

 

LRj  >  LRS1 + LRS2 

 

  This is the most favourable situation for using multiple traits analysis. 
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Testing for linked QTL vs pleiotropic QTL 

 

When two QTL are found in the same region, when using single trait analysis, the 

question arises whether these are actually the same genes affecting both traits, or whether 

these are two separate QTL.  

Unravelling this difference allows to better understand the nature of a genetic correlation 

between two traits. This would provide information concerning the possibility to break a 

unfavourable genetic correlation between two characters (in the case of linkage) or 

whether this is impossible (in the case of pleiotropism). 

The test can be carried out with H0: position 1 = position 2 

     H1: position 1 ≠ position 2 

 

Also other genetic models could be compared and tested (depending on design) 

- Existence of epistasis (see Chapter 10) 

- QTLs effecting one trait only vs effect on both traits 

 

Maximum likelihood might be a bit laborious for multiple trait analyses, especially when 

comparing a range of genetic models.  

    

Multiple trait analysis using regression 

 

Moser (2000) has proposed a multiple trait regression approach and showed that again 

regression is very similar to maximum likelihood methods (at least in designed 

experiments). 

As in single trait analysis, the approximate LR ≈ n ln( SSEreduced / SSEfull ) 

 

Moser proposes to use for a multiple trait analysis  
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LR ≈ n ln( |VEreduced| / |VEfull| ) 

 

i.e. rather than the sum of squares of errors of a single trait analysis, he used the 

determinant of the matrix with residual sum of squares and sum of cross products of 

errors for two traits. 

The advantage of the simple multiple trait regression method is that 

1) permutation tests are feasible 

2) a number of genetic models can bet tested and compared 
Moser (2000) used a genetic algorithm to efficiently find the most likely genetic model  (as described in the previous chapter).   

 

 

Multiple trait analysis using logistic regression 

 

Henshall and Goddard (1999) proposed to use logistic regression for multiple trait QTL 

mapping. In fact, this method is also very useful for single trait analysis.  

 

Logistic regression is used for traits where the response variable has a binomial 

distribution. Henshall and Goddard (1999) regressed, within half sib families, QTL 

genotype on phenotype. The QTL genotype refers to which QTL allele was received from 

the heterozygous sire (either Q or q). This is a 0/1 response with a probability, hence 

binomially distributed. Hence, rather than comparing phenotypic means for different 

marker genotype classes, they compared marker genotype classes for different 

phenotypes.  

 

The main advantages of this method: 

 

1) It is much simpler than maximum likelihood and standard software (like SAS) 

can be used, even for multi trait analyses. Maximum likelihood methods 

would be much more complex, as all data that was used in selection would 

have to be included in the analysis. Logistic regression however,  is nearly 

equivalent than ML. 
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Example: analysis of the traits Y and Z would require in SAS 

 

 proc logistic;

model Q/n = Y Z 

run;

 

  The variable Q is the marker genotype (0 or 1) and n is the number of 

 trials for each observation (=1) 

 

2) The phenotypic observations can be subject to selection (as regression is not 

affected by regression on the ‘x-variable’. Hence, logistic regression is a 

simple method that is applicable to data obtained from selective genotyping.  

 

The principle of the method is as follows: 

 

  

Let p = P(Q), i.e. probability of having inherited the Q-allele from the sire 

and assume genotype means of µ + α and µ - α for genotypes Q- and q- resp. 

.  

In single trait analysis, the logistic regression model is written as:

 bya
p

p +=
−

)
1

log(  

 

The QTL effect can be calculated as  
b

b 2211 σα ++−=  

 

 where σ2 is the sum of the residual variance σe
2 and the QRTL variance = α2. 

 

In multiple trait analysis, the model is: β')
1

log( Y
p

p =
−
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where Y and β are vectors.  The vector of QTL effects is 

 

1'1 +∑+
∑=

ββ
βA  where Σ = V * AA’ is the sum of the residual 

covariance matrix and the QTL covariance matrix. 

 

If there is no recombination between marker and QTL, we can observe p. 

However, in case of recombination (r), p depends on r.  

 

We can observe p if the marker is at the QTL (no recombination). Henshall and 

Goddard (1999) suggest that in case of recombination, the vector β can be 

estimated at each marker (as if it was the QTL), and the estimate for β at any 

position between two markers is obtained by linear interpolation. They also show 

how the log-likelihood can be calculated for any position of a QTL between two 

marked loci. 

 

 

Acknowledgement:  Thanks to Örjan Carlborg*, Leif Andersson* and Brian Kinghorn 

for permission to use direct quotation. Jie Song os acknowledged for summarizing the 

ML estimation procedure. 
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Exercise 1 Inheritance probabilities with two markers 

 

Consider two markers that are 40 cM apart. The alleles are M1/m1 at locus 1 and M2/m2 

at locus 2.  

 

− Calculate the recombination frequency between the markers, assuming Haldane’s 

mapping function 

− Calculate the recombination frequency, assuming Kosambi’s mapping function 

 

From now on we will use Haldane’s mapping function. 

 

Now assume there is a QTL effect at 10 cM from the first marker locus. The QTL has 

two alleles (Q/q). Consider a bull that has received a M1QM2 gamete from the sire and a 

m1qm1 gamete from the mother. 

 

− What are the expected paternal marker haplotypes in the offspring from this bull?   

− What are the recombination frequencies between the marker loci and the QTL. 

− How many paternal haplotypes for the three loci (M1-Q-M2) can be found in the 

offspring from this bull?  What are their expected frequencies? 

− Calculate conditional probabilities for carrying the Q-allele for each paternal 

marker haplotype. 

− Calculate expected phenotypic means for each group of progeny of a particular 

paternal marker haplotype, given the genotypic means of QQ, Qq and qq 

genotypes are 9, 10 and 11, respectively. Assume that the dams of the progeny 

contribute q alleles only. 
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Exercise 2: Interval Mapping of QTL  
 
We continue with the case as in Exercise 7.2. We have now 8 half sib progeny from the 
sire with the following data: 
 

Paternal marker 
haplotype 

phenotype 

M1M2 9.7 
M1M2 10.3 
M1m2 10.2 
M1m2 9.5 
m1M2 9.8 
m1M2 9.2 
m1m2 9.3 
m1m2 8.8 

 
− Estimate relevant effects (which?) for a QTL that is positioned at 10 cM from marker 

locus 1 and 30 cM from Marker locus 2. 
 
− Test whether there is a significant QTL effect at this location. 
 
Now use the excel spreadsheet QTLDET.XLS. 
The spreadsheet allows you to enter data in the blue cells about position of marker and 
QTL, and to give QTL parameters.  
 
− Verify the answers you obtained from the previous exercise concerning maker 

haplotype probabilities, and Q-probabilities conditional on marker haplotypes. 
 
The spreadsheet also allows you to simulate data for a half sib group.  
 
− Simulate data for 200 progeny, using the parameters as given in Exercise 2.2 and 1.3. 

Use a variance of 1. 
− What can you conclude concerning the QTL effect from your simulation? What 

evidence/criteria have you used to draw such conclusions. 
− Now simulate 10 such data sets. Determine the average value for the relevant QTL 

parameters, and their standard deviation. 
− Try to work out what would be a reasonable (minimal) progeny group size to detect 

this QTL 
− You can also work out the minimal progeny group size needed to detect a QTL of 0.5 

and 2, respectively. 
− Does the size of the marker bracket have a large effect on the minimal progeny group 

size? 
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Exercise 3: Models for multiple QTL 
 
 
Data is analysed from an experiment where we have hypothesised two QTL, each with 
two alleles (A and  for the first locus and B and b for the second locus, respectively. 
You can use the spreadsheet LINMOD.XLS to analyse the data. 
 
We have estimated the means for 16 QTL genotypes using phenotypic and marker 
genotype data from a QTL experiment. The QTL genotypes are inferred based on 
hypothetical QTL positions that were derived from the marker haplotypes. 
 

- Investigate for the following data the genetic model. 
 

- Estimate additive and dominance effects at each QTL. 
 

- Test whether effects are significant 
 

- Test whether there is epistasis between the QTLs 
 
 
Genotype     Mean      Number observed 
AABB 13.08 25
AABb 9.79 21
AabB 9.83 16
Aabb 8.72 23
AaBB 14.18 28
AaBb 9.62 32
AabB 10.15 17
Aabb 10.58 31
aABB 12.16 27
aABb 10.23 28
aAbB 9.79 19
aAbb 7.65 17
aaBB 7.97 34
aaBb 5.62 18
aabB 7.65 24
aabb 6.89 27
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