

- Concept: outbred individuals show lower Var(E)
 The effect is not very well known
- · Use inbred but unrelated parents to produce an F1
- Theoretical maximum: Var(A_{parent}) = Var(MS) = 0
- Effect:

$$sd(P) = \sqrt{0.7}\sigma_{P,0} = 0.84\sigma_{P,0}$$

- Some reduction is possible, in particular when Var(E) also decreases
- · Problem: How to get fully inbred sires and dams?

Treating Var(E) as a heritable trait

Key Question

1. Does $Var_g(\sigma_E^2) > 0$ occur?

2. Is this genetic variability in Var(E) heritable?

If the answer is YES, then we can breed for uniformity ☺

- Results from both models can be converted into each other
- · Both models have conceptual issues
 - The exponential model is statistically more correct
 - The additive model better fits within the usual animal breeding framework

	sviuerice.	IIVE:	SIUCK	•			
Comparison of literature estimates of genetic variance in environmental variance							
Source	Trait	$\sigma^2_{A_{v}, exp}$	$\sigma^{2}_{A_v}{}^b$	h_{v}^{2r}	GCV _E ^d		
SANCRISTOBAL-GAUDY et al.	Fat/protein goat milk	0.000	0.000	0.000	0.000		
(1998)	pH pig	0.150	1.2E-04	0.039	0.402		
SANCRISTOBAL-GAUDY et al. (2001)	Litter size sheep	0.230	0.057	0.048	0.509		
Sorensen and WAAGEPETERSEN (2003) ^a	Litter size pigs	0.090	4.291	0.026	0.307		
Ros et al. (2004)*	Body weight (g) snails	0.290	0.368	0.017	0.580		
Rowe et al. (2006)	Body weight (kg) broiler ♂	0.086	8460	0.029	0.299		
	Body weight (kg) broiler ^Q	0.096	5310	0.031	0.318		
Rowe et al. (2006)	snails Body weight (kg) broiler 3 Body weight (kg)	0.086	8460 5310	0.029	0.299		

Estimated GCV are quite high \rightarrow suggests good prospects for improvement

Drosophila bristles and the nature of quantitative genetic variation

Mackay and Lyman (2005) Phil. Trans. R. Soc. 360: 1513

~300 inbred lines
Crosses between those lines (uniform F1's, i.e. heterozygous clones)
Model: CV = sex + line + sex*line + e
Var(line) > 0 → genetic variance in var(E)

Not necessarily heritable variance!

	sternople	sternopleural bristle number				abdominal bristle number					
source	d.f.*	MS ^b	F	Þ	σ^{2c}	MS ^b	F	þ	σ^{2c}		
sex	1	66.030	6.34	0.0122	fixed	44 182.0	167.86	< 0.0001	fixed		
line	325	14.544	1.40	0.0013	1.089	1117.717	4.23	< 0.0001	220.4		
sex×line	320	10.403	0.97	0.6117	-0.155	264.288	1.47	< 0.0001	43.4		
	the second se				111 110	a la sera de					
error ^a Degrees of: ^b Type III me ^c Variance co Table 2. An	623 freedom. Tl ean squares. imponent. nalyses of g	he design is unb	alanced as so e of enviror	ome lines produce umental plastici	ed individuals o	f only one sex. gous chromos	ome 3 sub	stitution lines.	179.2		
error ^a Degrees of: ^b Type III me ^c Variance co Table 2. An	o23 freedom. Tl ean squares. mponent. alyses of g sternople	enetic variance	alanced as so e of enviror mber	ome lines produce umental plastici	ed individuals o	f only one sex. gous chromos abdominal	ome 3 sub bristle nur	stitution lines.	179.2		
a Degrees of: Type III ma Variance co Table 2. An source	1223 Treedom. The an squares. Amponent. Analyses of g ster nople d.f. ^a	enetic variance sural bristle nu MS ^b	e of enviror mber	nme lines produce nmental plastici	ed individuals of ty for homozy σ^{2e}	rgous chromos abdominal MS ^b	ome 3 sub bristle nur F	stitution lines. nber p	σ ^{2e}		
error ^a Degrees of: ^b Type III ma ^c Variance co Table 2. An source sex	freedom. Ti ean squares. mponent. aalyses of g sternople d.f.* 1	enetic variance ural bristle nu MS ^b 75.868	e of environ mber F 7.84	produce produce p 0.0054	σ^{2e}	rgous chromos abdominal MS ^b 9031.54	ome 3 sub bristle nur F 80.69	stitution lines. nber \$ 	σ ^{2e}		
error a Degrees of i b Type III me c Variance co Table 2. An source sex line	freedom. Ti ean squares. imponent. aalyses of g sternople d.f.* 1 322	enetic variance ural bristle nu MS ^b 75.868 12.863	e of environ mber F 7.84 1.33	p mental plastici p 0.0054 0.0056	a^{2e} a^{2e} a^{2e} b^{2	rgous chromos abdominal MS ^b 9031.54 425.600	ome 3 sub bristle nur F 80.69 3.80	stitution lines. nber <u>\$</u> <0.0001 <0.0001	σ ^{2c} fixec 78.4		
Pror Degrees of: Type III me Variance co Table 2. An source lex ine ine ine	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	enetic variance ural bristle nu MS ^b 75.868 12.863 9.693	e of enviror mber F 7.84 1.33 1.18	p mental plastici p 0.0054 0.0056 0.0451	σ^{2e} fixed σ^{2e} σ^{2e}	abdominal MS ^b 9031.54 425.600 112.130	ome 3 sub bristle nur F 80.69 3.80 1.19	stitution lines. nber <u>p</u> <0.0001 <0.0001 0.0373	σ ^{2e} fixed 78.4		

Genetic variance in microenvironmental sensitivity laying hens/broilers

Species	Trait	varav	GCV ve	GCV sd	GCV vp	GCV sdp	h2v
Laying hens	Egg color purebreds	0.08	0.28	0.14	0.11	0.05	0.01
	Egg color crossbreds	0.07	0.26	0.13	0.13	0.07	0.01
	Egg weight	0.10	0.32	0.16	0.17	0.09	0.03
Broilers	Body weight males	0.10	0.32	0.16	0.26	0.13	0.03
	Body weight females	0.14	0.37	0.19	0.30	0.15	0.04
	Body weight males	0.24	0.49	0.25	0.36	0.18	0.05
	Body weight females	0.32	0.57	0.29	0.36	0.18	0.05

Genetic variance in microenvironmental sensitivity pigs

Species	Trait	varav	GCV ve	GCV sd	GCV vp	GCV sdp	h2v
Pigs	Piglet birth weight LW	0.04	0.19	0.09	0.15	0.07	0.01
	Piglet birth weight LR	0.04	0.21	0.10	0.16	0.08	0.01
	Carcass weight P	0.08	0.28	0.14	0.17	0.09	0.03
	Carcass weight Spain	0.12	0.34	0.17	0.15	0.08	0.01
	Litter size Denmark	0.09	0.31	0.15	0.23	0.12	0.03

envir	Genetic varia onmental ser	ince nsitiv	e in vity	mic dai	ro- iry c	catt	le
Species	Trait	varav	GCV ve	GCV sd	GCV vp	GCV sdp	h2v
Dairy cattle	milk NL	0.03	0.19	0.09	0.04	0.02	<0.01
	milk Sweden	0.05	0.22	0.11	0.07	0.03	0.01
	SCS Sweden	0.05	0.21	0.11	0.10	0.05	0.01
	SCS Robustmilk farms	0.08	0.28	0.14	0.08	0.04	0.01
	milk Belgium	0.03	0.17	0.09	0.06	0.03	<0.01
	SCS Belgium	0.03	0.16	0.08	0.08	0.04	<0.01
	SFA Belgium	0.01	0.12	0.06	0.04	0.02	<0.01
	UFA Belgium	0.02	0.12	0.06	0.08	0.04	<0.01
	C18:1 cis-9 Belgium	0.02	0.12	0.06	0.09	0.04	<0.01

Genetic variance in microenvironmental sensitivity fish

Species	Trait	Varav	GCV ve	GCV sd	GCV vp	GCV sdp	h2v
Fish	Salmon	0.17	0.42	0.21	0.26	0.13	0.03
Tilapia	Harvest weight			0.18			
	length			0.12			
	width			0.17			
	Depth			0.17			

Genetic correlation phenotype and micro-environmental sensitivity

Analysis	$r_{A_mA_v}$	se
Egg color purebreds	-0.06	0.09
Egg color crossbreds	0.48	0.11
Piglet birth weight LW	0.62	0.12
Piglet birth weight LR	0.55	0.14
Carcass weight	0.13	0.16
Dairy cattle milk	0.74	
Estimates tend to be positive: higher trait val	ues go together with	more variation

Source Trait $\sigma_{A_v,exp}^2 = \sigma_{A_v}^2 + h_v^{2\varepsilon}$ GCV								
SANCRISTOBAL-GAUDY et al.	Fat/protein goat milk	0.000	0.000	0.000	0.000			
(1998)	pH pig	0.150	1.2E-04	0.039	0.402			
SANCRISTOBAL-GAUDY et al. (2001)	Litter size sheep	0.230	0.057	0.048	0.509			
Sorensen and WAAGEPETERSEN (2003) ^a	Litter size pigs	0.090	4.291	0.026	0.307			
Ros et al. (2004) ^a	Body weight (g) snails	0.290	0.368	0.017	0.580			
Rowe et al. (2006)	Body weight (kg) broiler ්	0.086	8460	0.029	0.299			
	Body weight (kg) broiler ♀	0.096	5310	0.031	0.318			
"Models included permanent en	vironmental variance; enviro	onmental var	iance was take	en from thei	r model 1			
^b Equation 17: $\sigma_{A_{e}}^{2} = \sigma_{E,exp}^{4} \exp(2 \delta_{A_{e}}^{2}) = \frac{\sigma_{A_{e}}^{2}}{\delta_{A_{e}}^{2}} = \sigma_$	σ ² _{A,exp}) – σ ⁴ _E . bility of environmental varia evolvability (HouLe 1992).	ince.						

