QTL mapping for practitioners from linkage to gene

Exploitation of genes with major effect

- Detect genotypes based on phenotype only
 - eye and coat colour, genetic defects
 - double muscling, Booroola, Halothene
- Detect with the aid of genetic markers
 - > Location, also those with smaller effect
- Detect actual gene mutation

Long term response

Segregation Analysis

- For detection of major genes or single gene effects
 - (often without markers)
- Based on phenotypic distributions between/within families
- Use of genotype probabilities
 - e.g. in DNA genotyping strategies
- Can be precursor to marker studies

Segregation Analysis

- Based on
 - genotype probabilities
 - function (model) to translate phenotypes to genotype probabilities g(y|u)

Genotype probabilities

- Females have been DNA tested for gene with variants A and a.
- Red lines from males
- Male in second row must be Aa. Why?
- The answer is uncertain for the other two males ...

Male in row	p(aa)	p(Aa)	a(AA)
1	0.6	0.4	0
2	0	1	0
3	2/3	1/3	0

Segregation analysis A systematic approach for complex pedigree

Use information from three sources:

1. Parents

2. Self
$$prob (u) = \frac{prior (u)g(y|u)}{\sum_{v=1}^{k} prior (v)g(y|v)}$$

3. Mate(s) plus progeny

g(y|u)

probability of expressing a certain phenotype giving the genotype

3 distinct genotypes

```
100 phenotype 1
```

0 1 0 phenotype 2

001 phenotype 3

complete dominance

```
1 1 0 phenotype 1
```

001 phenotype 2

incomplete penetrance

```
1 1 .2 phenotype 1
```

00.8 phenotype 2

Example in pigs - the halothane gene

- Halothane gene variants H and h
- HH pigs are normal
- *hh* pigs ...
 - susceptable to halothane gas
 - porcine stress syndrome (PSS)
 - pale soft exudative (PSE) meat
 - higher lean percent
- *Hh* pigs mostly like *HH* pigs

Example in pigs - the halothane gene

- A slightly bigger problem.
- 60,000 pigs get
 probabilities (or
 certainties) from only
 113 DNA tests
- Results used in determining effect of halothane variants and in making selection decisions.

Example in sheep - the spider syndrome

- Spider gene variants S and s
- SS and Ss sheep are normal
- ss sheep are 'spider'
- DNA test is now available

Progeny test to detect carriers

Information from all relatives to detect carriers

Example in sheep - the spider syndrome

- 167 sheep, including 6 spiders progeny of 3 rams and 3 ewes.
- A small number of spiders lambs gives a lot of information at the population level.
- Can use mixture of DNA test and phenotypic observations.

Conclusions so far

- Segregation analysis is available to help identify carriers of unwanted genes, and extend value of DNA tests.
- The resulting genotype probabilities can be used in many ways.
 - Evaluate gene variants.
 - Select to exploit or get rid of gene variants.

QTL detection without markers

Kinghorn, B.P.; Kennedy, B.W.; Smith, C. (1993) A method of screening for genes of major effect. Genetics 134, 351-360.

Susceptibility to ticks

Regression method: Genotype probabilities ...

Regression method:

Adding marker information:

	Proband QTL genotype conditional probability		
Proband Marker Genotype	QQ	Qq	qq
none	0.25	0.5	0.25
1 3	$(1-r)^2$	2r(1-r)	\mathbf{r}^2
1 4	r(1-r)	$r^2 + (1-r)^2$	r(1-r)

QTL detection with markers

Segregation Analysis

- -ve
 - Need to wait for phenotype
 - Could be sensitive to aberrations in variance
- +ve
 - cheap way of obtaining genotype information
 - can be used to suggest segregation and heteroz's
 - can be used in combination with gene markers